氧化硅納米材料的制備與表征
發(fā)布時間:2018-06-17 11:38
本文選題:氧化硅納米材料 + 醇解法。 參考:《吉林大學》2016年碩士論文
【摘要】:近年來,氧化硅納米材料成為納米材料中的研究熱點和重點。氧化硅納米材料在各個領域都有著廣泛的應用,例如醫(yī)學、催化、國防軍事等。制備更小、分散性更好及特殊形貌的氧化硅納米材料吸引著廣泛的研究興趣。制備氧化硅納米材料的研究,主要分干法和濕法兩大類。這些方法中,溶膠凝膠法的優(yōu)點是可以制備純度高的產物,但產物粒徑較大;氣相法制備的氧化硅納米材料分散性好、純度高、表面羥基少,缺點是成本高、技術復雜、能量消耗大、不適宜大量生產,F(xiàn)有文獻中提到的所制備的氧化硅納米顆粒的粒徑最小可達到5 nm,由化學沉淀法制備得到。粒徑尺寸達到10 nm以下的氧化硅納米材料具有更好的生物兼容性。但一般涉及復雜的制備過程,條件要求高。本論文所述的氧化硅制備方法簡單,產品純度高,產量大,反應所需的原材料價格低廉,適合大量生產。主要研究結果如下:(1)以正硅酸乙酯(TEOS)為硅源,以油酸為溶劑,分別與甲醇、乙醇、正丙醇、異丙醇在不同條件下進行反應,生成氧化硅粉體。通過XRD,TEM等技術對所制備的樣品進行表征,所得到的樣品主要為由球形納米氧化硅團聚而成的鏈狀結構。當前驅物為乙醇,反應時間為24 h時,所得到的樣品為尺寸均一的納米球狀氧化硅,且分散性極好,沒有團聚,粒徑在500 nm左右。(2)研究發(fā)現(xiàn),所用醇的種類及反應時間的不同均會影響所得到的氧化硅納/微米球體的粒徑。當以用異丙醇提供羥基時,所制備的氧化硅粉體的粒徑最小,在20 nm~40 nm之間。以甲醇為前驅物時,所制備的氧化硅粉體的粒徑最大,在0.5μm~1.5μm之間。(3)在不改變前驅物的條件下,研究發(fā)現(xiàn),反應時間對樣品的形貌也有影響。隨著反應時間的增加,所得到的樣品粒徑呈現(xiàn)出先增大后減小的趨勢。當前驅物為甲醇時,反應時間為24 h所得到的樣品粒徑最大,約為1.5μm;當前驅物為異丙醇時,反應時間為48 h所得到的樣品粒徑最大,約為40 nm。這是由于在反應時間較短時,由醇提供羥基。隨著反應時間增加,醇與TEOS發(fā)生反應,樣品粒徑逐漸增加。當醇被大量消耗后,隨著反應時間進一步增加,以溶劑油酸與產物發(fā)生的反應為主,所以樣品粒徑減小。(4)為研究表面活性劑的作用,進行了同等條件下加入表面活性劑十二烷基苯磺酸鈉(SDBS)的對比試驗。實驗結果表明,該種表面活性劑可以使所得到的氧化硅表面更平滑。在以無水乙醇為前驅物,反應時間為24 h的對比實驗中,得到的樣品為由納米氧化硅球體團聚而成的納米鏈狀結構。(5)四氯化硅(Si Cl4)是有機硅工業(yè)中常見的有毒廢料。本論文以Si Cl4為硅源,制備無毒的氧化硅納米材料。分別用不同醇(乙醇、正丙醇、異丙醇)作為前驅物,并改變反應時間,對不同醇以及反應時間對樣品形貌的作用進行研究。以Si Cl4為硅源所制備的樣品粒徑較大,在200 nm~2μm之間。隨著醇的改變,樣品粒徑也隨之變化,其中以用異丙醇提供羥基時樣品粒徑最小,約為200 nm,以乙醇為前驅物樣品粒徑最大,可達到2μm。其形貌也明顯區(qū)別于以TEOS為硅源的樣品,當前驅物為異丙醇時,所得到的樣品為納米鏈狀結構,當前驅物為正丙醇時,樣品尺寸明顯增加,為納米氧化硅球體。當前驅物為乙醇,反應時間為24 h時,樣品為納米片狀氧化硅團聚而成的中空納米球體。當反應時間增加后,樣品為實心球體,且團聚現(xiàn)象嚴重。
[Abstract]:In recent years, silicon oxide nanomaterials have become the focus of research in nanomaterials. Silicon oxide nanomaterials have been widely used in various fields, such as medicine, catalysis, national defense and military. The preparation of silicon oxide nanomaterials with smaller preparation, better dispersivity and special morphologies has attracted wide research interest. In these two major categories, mainly dry and wet methods, the advantages of the sol-gel method are that the products with high purity can be prepared, but the size of the products is larger. The silica nanomaterials prepared by gas phase method have good dispersibility, high purity, and few surface hydroxyl groups. The disadvantages are high cost, complex technology, large energy consumption and unsuitable production. The minimum particle size of the prepared silicon oxide nanoparticles is up to 5 nm and is prepared by chemical precipitation. The silica nanomaterials with a size size of less than 10 nm have better biocompatibility. But the complex preparation process is generally involved, and the conditions are high. The preparation of silicon oxide described in this paper is simple and the product is simple. The main results are as follows: (1) the reaction between ethyl orthosilicate (TEOS) as silicon source and oleic acid as solvent, methanol, ethanol, propanol and isopropanol in different conditions to produce silica powders by XRD, TEM and so on. The sample is characterized by a chain like structure of spherical nano silicon oxide. The current drive is ethanol, when the reaction time is 24 h, the obtained sample is a homogeneous nanoscale silicon oxide, with excellent dispersion and no reunion, the particle size is in the left right of 500 nm. (2) the study found that the types of alcohol used and the reaction time were found. The particle size of the oxidized silicon nano / microsphere will be affected. When the hydroxyl group is provided with isopropanol, the particle size of the silica powders is the smallest, between 20 nm~40 nm. When methanol is used as a precursor, the size of the silica powder is the largest, between 0.5 and m~1.5 mu m. (3) study under the condition of not changing the precursor It is found that the reaction time has an influence on the morphology of the sample. With the increase of the reaction time, the particle size of the sample increases first and then decreases. When the current is methanol, the size of the sample with the reaction time of 24 h is the largest, about 1.5 mu m, and the particle size of the sample when the current is isopropanol and the reaction time is 48 h The maximum is about 40 nm., which is due to the supply of hydroxyl alcohol by alcohol at the short reaction time. As the reaction time increases, the alcohol and TEOS react with the particle size. When the alcohol is consumed, the reaction time is increased, the reaction of the solvent oil acid and the product is the main, so the sample size decreases. (4) the study of surface activity. The effect of the sex agent was carried out under the same condition as a contrast test on the addition of twelve alkyl benzene sulfonate (SDBS) with the surfactant. The results showed that the surface active agent could make the surface of the silicon oxide more smooth. In the contrast experiment with anhydrous ethanol as the precursor and the reaction time of 24 h, the sample obtained was the nano silicon oxide. (5) four silicon chloride (Si Cl4) is a common toxic waste in the organosilicon industry. This paper uses Si Cl4 as a silicon source to prepare non-toxic silica nanomaterials. Different alcohols (ethanol, propanol, isopropanol) are used as precursors, and the reaction time is changed, and the samples form different alcohols and reaction times. The size of the sample prepared by Si Cl4 as the silicon source is larger and between 200 nm~2 mu m. With the change of alcohol, the particle size also changes. In the case of isopropanol providing hydroxyl group, the size of the sample is the smallest, about 200 nm, and the size of the sample with ethanol as the precursor is the largest, and the morphology of the sample is 2 mu m. and the morphology is distincently different from TEOS. For the sample of silicon source, when the current drive is isopropanol, the sample is a nano chain structure. When the current drive is normal propanol, the size of the sample is increased obviously, it is a nanometer silicon oxide sphere. The current drive is ethanol, when the reaction time is 24 h, the sample is a hollow nanoscale sphere formed by the nanometallic silicon oxide. When the reaction time is increased, The sample is a solid sphere, and the agglomeration is serious.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TB383.1
【參考文獻】
相關期刊論文 前10條
1 任麗霞;王柏;;卡維地洛-中空介孔二氧化硅固體分散體的制備與表征[J];中國藥科大學學報;2014年01期
2 阮秀;董磊;于晶;于良民;楊玉臻;;軟模板法合成納米材料的研究進展[J];材料導報;2012年01期
3 包孟如;朱桂茹;汪錳;高從X&;;單分散球形納米二氧化硅制備方法的研究進展[J];材料導報;2011年S2期
4 姜小陽;李霞;;納米二氧化硅微球的應用及制備進展[J];硅酸鹽通報;2011年03期
5 董江慶;;幾種常見納米材料催化劑的研究[J];中國石油和化工標準與質量;2011年05期
6 王靜;劉爽;張春;徐輝碧;楊祥良;;手性納米二氧化硅的制備和應用[J];化學進展;2011年04期
7 芳明;;納米二氧化硅的制備、表面改性和應用前景[J];精細化工原料及中間體;2011年01期
8 康永;柴秀娟;;納米材料的性能及研究進展[J];西部皮革;2010年15期
9 韓靜香;佘利娟;翟立新;劉寶春;;化學沉淀法制備納米二氧化硅[J];硅酸鹽通報;2010年03期
10 袁麗;王蓓娣;唐倩倩;張曉鴻;張曉環(huán);楊東;胡建華;;介孔二氧化硅納米粒子應用于可控藥物傳輸系統(tǒng)的若干新進展[J];有機化學;2010年05期
,本文編號:2030904
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2030904.html
最近更新
教材專著