彎曲法測試二氧化鈦納米線的力學性能
發(fā)布時間:2018-06-19 06:49
本文選題:TiO_2納米線 + 彎曲測試法; 參考:《浙江理工大學》2015年碩士論文
【摘要】:納米線納米管等一維納米材料因其較小的尺寸而具有許多突出的物理特性,如光電熱力等。其中力學是最基本的物理性能之一,因此對納米材料力學特性的研究不僅有助于揭示其尺寸-結構-性能的內(nèi)在關聯(lián),更對微納傳感器及機電器件的發(fā)展有著重要意義。到目前為止,仍沒有一種方法可以同時實現(xiàn)對不同尺度的一維納米材料力學性能的測試。本論文首次提出MM3A微操縱系統(tǒng)與掃描電子顯微鏡(SEM)相結合的測試平臺,并采用彎曲法,在此環(huán)境下實現(xiàn)了對納米級單根Ti O2納米線及微米級Ti O2納米線束的力學性能的快速準確測量;通過對多次測試結果的分析,發(fā)現(xiàn)在微納尺度下Ti O2納米線的楊氏模量均沒有尺寸依賴性。主要內(nèi)容及測試結果歸納如下:1.基于彎曲法的懸臂梁模型對單根Ti O2納米線的力學性能進行了測試。以直徑為320nm,長度為5.6μm的單根Ti O2納米線為例,測得其自由端彎曲過程中的受力-撓度曲線,線性擬合得到斜率K=0.975 N/m,根據(jù)理論公式計算楊氏模量E為110.77GPa。通過對直徑在270~920nm之間的12根Ti O2納米線測試數(shù)據(jù)的分析,得到單根Ti O2納米線楊氏模模量的平均值?E=120.39GPa;發(fā)現(xiàn)直徑在100~1000nm范圍的Ti O2納米線的楊氏模量不隨直徑尺度的變化而改變,沒有明顯的尺寸依賴性。2.基于彎曲法的雙端固支梁模型對Ti O2納米線束的力學性能進行了測試。以直徑為25.6μm,長為1.38mm的Ti O2納米線束為例,測得其受力-撓度曲線的斜率K=149.8 N/m,計算得到其楊氏模量E為101GPa。同樣對直徑在25~72μm之間的10根Ti O2納米線束的測試數(shù)據(jù)的分析研究,得到Ti O2納米線束楊氏模模量的平均值?E=92.01GPa;發(fā)現(xiàn)直徑在10~100μm范圍的Ti O2納米線束的楊氏模量也沒有明顯的尺寸依賴性。本論文通過對單根Ti O2納米線及Ti O2納米線束受力-撓度曲線和楊氏模量的測試,首先發(fā)現(xiàn)在100 nm~100μm尺寸范圍內(nèi),Ti O2納米線均沒有尺寸依賴性;得出了同一物質(zhì)在不同形態(tài)下(單根或者一束),其楊氏模量不變,是其本身屬性的結論;其次提出了一種可以快速準確地測量一維微納米材料力學參數(shù)的彎曲測試法,以MM3A微操縱系統(tǒng)與掃描電子顯微鏡(SEM)相結合作為測試工作平臺,實驗操作簡單且測試結果準確。
[Abstract]:Nanowires, nanotubes, and other one-dimensional nanomaterials have many outstanding physical properties, such as light, electricity, heat, and so on. Mechanics is one of the most basic physical properties. Therefore, the study of mechanical properties of nanomaterials is not only helpful to reveal the intrinsic correlation of its size - structure - properties, but also to micro sensor and electromechanical The development of devices is of great significance. So far, there is still no way to test the mechanical properties of one-dimensional nanomaterials at the same time. In this paper, the test platform combined with MM3A micromanipulation and scanning electron microscope (SEM) was first proposed and the bending method was used. The rapid and accurate measurement of the mechanical properties of the root Ti O2 nanowires and the micron Ti O2 nanowire bundles showed that the young's modulus of the Ti O2 nanowires was not dependent on the size of the micronano scale. The main contents and test results were summarized as follows: 1. the cantilever beam model based on the bending method was used for the single Ti O2 nanowires. The mechanical properties were tested. Taking the single Ti O2 nanowires with a diameter of 320nm and 5.6 u m as an example, the force deflection curve of the free end bending process was measured and the slope K=0.975 N/m was obtained by linear fitting. According to the theoretical formula, the 12 Ti O2 nanowires of the young's modulus E were calculated by the straight diameter of the 12 Ti O2. According to the analysis, the average modulus of modulus of Young's modulus of single Ti O2 nanowires was obtained? E=120.39GPa, and the young's modulus of Ti O2 nanowires with the diameter of 100~1000nm did not change with the size of the diameter, and the mechanical properties of the Ti O2 nanowire bundles were measured by the two end solid supported beam model based on the bending method, and the mechanical properties of the Ti O2 nanowire bundles were measured. An example of a Ti O2 nanoscale beam with a diameter of 25.6 mu m and a long 1.38mm is taken as an example to measure the slope K=149.8 N/m of the force deflection curve. The analysis of the measured data of the young modulus E of the young's modulus E is the same to the 10 Ti O2 nanowire bundles of the diameter between 25~72 and m, and the average modulus of the modulus of the Yang's modulus of the nanowire bundle is obtained. The young's modulus of the Ti O2 nanowire bundles with a diameter of 10~100 mu m was found to have no significant dimensional dependence. This paper first found that the Ti O2 nanowires were not dimensional dependent by testing the force deflection curves of single Ti O2 nanowires and the Ti O2 nanowire bundles and the young's modulus, and the same was found in the same size range of 100 nm~100 m. The young modulus of a substance in a different form (single or one) is the conclusion of its own property. Secondly, a bending test method can be used to measure the mechanical parameters of one dimension and nanometer material quickly and accurately, which is combined with MM3A micromanipulation and scanning electron microscopy (SEM) as the testing work platform and the experimental operation is simple. Simple and accurate test results.
【學位授予單位】:浙江理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB383.1;O614.411
【參考文獻】
相關期刊論文 前2條
1 趙全斌;焦繼偉;楊恒;林梓鑫;李鐵;張穎;王躍林;;基于壓阻檢測的雙端固支硅納米梁諧振特性研究[J];傳感技術學報;2006年05期
2 張段芹;劉建秀;褚金奎;;低維納米材料的力學性能測試技術研究進展[J];微納電子技術;2014年07期
相關博士學位論文 前3條
1 吳森;基于AFM的一維納米材料操縱及力學特性測試技術[D];天津大學;2012年
2 徐臨燕;納米梁諧振器的測試與表征方法研究[D];天津大學;2009年
3 莫日根;氧化鋅納米線力學性能的實驗和理論納米力學研究[D];清華大學;2011年
,本文編號:2038988
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2038988.html
最近更新
教材專著