孔結構對納米澆注的中孔鈣鈦礦上甲醇氧化反應動力學的影響(英文)
[Abstract]:Limiting the emission of industrial toxic gases (such as volatile organic compounds) is one of the major challenges in today's society. Therefore, there is an urgent need to develop environmentally friendly technologies to eliminate pollutants without causing secondary pollution. The high cost of noble metal catalysts is not conducive to industrial applications. Therefore, people have been committed to research and develop new materials to replace noble metal catalysts. However, the preparation of this material needs to be carried out at high temperature (700 C), so its specific surface area (30m~2/g) is very low, which limits its application. It can be seen that in order to make this material widely used in industry, great breakthroughs must be made in the preparation technology, that is, high specific surface area of perovskite materials. Material. Perovskite oxides with a specific surface area of 100 m~2/g have been successfully prepared by calcination at 200 C, but the specific surface area of the samples decreased with increasing calcination temperature. In the past 20 years, mesoporous silica and many subsequent mesoporous materials have been successfully prepared, resulting in the synthesis of non-silicon-based materials (such as carbon) with very high specific surface area. Among the preparation methods of these materials, nano-casting method is especially suitable for preparing single metal or single metal oxide with high specific surface area. A series of materials have been successfully prepared by nano-casting method and used in many catalytic reactions. In order to successfully use these materials in industrial applications, it is necessary to study their surface reaction mechanism and related reaction kinetics. Recently, our group has prepared mesoporous perovskite oxides with high specific surface area by nano-casting method. The results show that the nano-cast perovskite oxides have higher catalytic efficiency than the corresponding bulk oxides in various gas-phase reactions. Based on this, the nano-cast LaMnO_3 with high specific surface area was prepared by using SBA-15 as hard template at different temperatures and X-ray diffraction. The crystalline phase, texture, surface and oxidation-reduction properties of the prepared materials were analyzed by means of emission, N_2 adsorption-desorption, transmission electron microscopy, temperature-programmed reduction and O_2-temperature-programmed desorption. The effects of pore structure parameters on the catalytic performance and kinetics of methanol complete oxidation were investigated. A series of LaMnO_3 materials with adjustable specific surface area (80-190 m~2/g) were successfully prepared by using SBA-15 as templates aged at 35,100,140 C, and the samples with the largest specific surface area had the highest catalysis. The rate constants of the catalysts were obtained by measuring the results of methanol oxidation at different space velocities (19500-78200h-1). It was found that the rate constants of the catalysts varied with the specific surface area of the catalysts. In addition, there is a linear relationship between the pre-exponential factor and the specific surface area of the catalyst, indicating that although the specific surface area of the catalysts is different, the specific activity of methanol oxidation per unit surface area is the same. Similarly, since it is difficult to remove the residual Si species during the preparation process, we will further investigate the effect of the residual species on the properties of nano-cast perovskite materials in future work.
【作者單位】: 拉瓦爾大學化學系Matériaux
【基金】:supported by the the National Science and Engineering Research Council(Canada) the Fonds Québécois de la Recherche sur la Nature et les Technologies(Province of Quebec)
【分類號】:O621.251;O643.36
【相似文獻】
相關期刊論文 前10條
1 王進;從尾礦中回收鈣鈦礦[J];有色金屬(選礦部分);1982年06期
2 張登福;;用鈣鈦礦制取富集的鈦產品[J];礦產綜合利用;1993年03期
3 別利劍,李國寶,廖復輝,林建華;六方類鈣鈦礦體系La_2Ca_2MnO_7-Sm_2Ca_2MnO_7的結構變化和相關系[J];高等學校化學學報;2003年05期
4 ;在羧基甲基纖維素存在下鈣鈦礦的浮選[J];國外金屬礦選礦;1987年06期
5 王穎霞,別利劍,秦瑞雯,林建華,尤力平;三方層狀鈣鈦礦化合物——結構化學原理及應用[J];自然科學進展;2002年05期
6 許麗梅;林秋惠;林結華;;金屬鹵化物鈣鈦礦模板的構筑及表征[J];湛江師范學院學報;2007年06期
7 王進;新型焊條涂料的選收及其應用[J];有色金屬(選礦部分);1989年01期
8 別利劍,李國寶,廖復輝,林建華;六方類鈣鈦礦體系La_(2-x)Nd_xCa_2MnO_7的結構和相關系[J];無機化學學報;2003年01期
9 王建偉;鈉米鈣鈦礦復合氧化物的析氧電催化性質的研究[J];衡陽師范學院學報(自然科學);2002年03期
10 劉冬梅;李小兵;秦賽;朱明;;雙鈣鈦礦La_2NiMnO_6多晶靶材的制備及結構表征[J];化工時刊;2013年07期
相關會議論文 前10條
1 李云龍;孫偉海;卞祖強;黃春輝;;高效的鈣鈦礦平面異質結太陽能電池研究[A];中國化學會第29屆學術年會摘要集——第37分會:能源納米科學與技術[C];2014年
2 孟慶波;李冬梅;羅艷紅;;界面調控與高效率鈣鈦礦太陽能電池[A];中國化學會第29屆學術年會摘要集——第25分會:有機光伏[C];2014年
3 宋嘉興;姚詩余;田文晶;;平面異質結低溫溶液處理鈣鈦礦太陽能電池[A];中國化學會第29屆學術年會摘要集——第25分會:有機光伏[C];2014年
4 楊月勇;肖俊彥;羅艷紅;李冬梅;孟慶波;;基于碳電極高效率鈣鈦礦太陽能電池[A];中國化學會第29屆學術年會摘要集——第30分會:低維碳材料[C];2014年
5 肖立新;鄭靈靈;馬英壯;王樹峰;陳志堅;曲波;龔旗煌;;高效雜化鈣鈦礦光伏器件[A];中國化學會第29屆學術年會摘要集——第17分會:光電功能器件[C];2014年
6 顧卓韋;吳剛;陳紅征;;溶膠-凝膠法制備氧化鋅-鈣鈦礦平面異質結太陽電池[A];中國化學會第29屆學術年會摘要集——第25分會:有機光伏[C];2014年
7 張秋菊;李白海;陳亮;;Pt摻雜的CaTiO_3的自再生機理的計算研究[A];中國化學會第27屆學術年會第14分會場摘要集[C];2010年
8 苗君;喬利杰;姜勇;;鈣鈦礦多鐵性氧化物異質結的低疲勞反轉、磁電雙弛豫、及缺陷調控[A];2012中國功能新材料學術論壇暨第三屆全國電磁材料及器件學術會議論文摘要集[C];2012年
9 趙永男;孫振;;鋯酸鋇中空微球的摻雜及發(fā)光性能[A];第十二屆固態(tài)化學與無機合成學術會議論文摘要集[C];2012年
10 劉代俊;徐程浩;;微波對鈣鈦礦晶體的基本作用[A];第一屆全國化學工程與生物化工年會論文摘要集(上)[C];2004年
相關重要報紙文章 前2條
1 劉霞;鈣鈦礦材料成為高能效“幫手”[N];中國化工報;2013年
2 常麗君;鈣鈦礦材料實現(xiàn)電器自充電[N];中國化工報;2014年
相關博士學位論文 前2條
1 王金鳳;磁性雙鈣鈦礦陶瓷的制備、結構及物性研究[D];南京大學;2014年
2 李毅;介孔鈣鈦礦太陽電池及新型氧化物太陽電池的研究[D];中國科學技術大學;2015年
相關碩士學位論文 前10條
1 王衛(wèi)衛(wèi);聚合物電荷傳輸材料在鈣鈦礦太陽能電池中的應用[D];蘇州大學;2015年
2 楊嫻;雙鈣鈦礦Sr_2CoReO_6和W摻雜雙鈣鈦礦Sr_2FeReO_6的第一性原理研究[D];陜西師范大學;2014年
3 馬佳慧;在二氧化鈦多孔層制造人工孔從而獲得高效鈣鈦礦太陽能電池[D];吉林大學;2015年
4 吳嫻;CuBr_2基有機—無機層狀類鈣鈦礦雜合物材料的合成與表征[D];武漢理工大學;2010年
5 徐圣東;銅摻雜SnI_2基層狀類鈣鈦礦雜合物的結構與性能研究[D];武漢理工大學;2012年
6 諸敏;錳基鈣鈦礦超晶格電磁性能的第一原理計算研究[D];華東師范大學;2011年
7 代超;鈣鈦礦氧化物薄膜中的應力釋放機制研究[D];電子科技大學;2012年
8 劉倩;聚合物太陽能電池中添加鹵代烷烴對摻雜濃度的影響及鈣鈦礦電池制備工藝初探[D];北京交通大學;2015年
9 彭財?shù)?雙鈣鈦礦Ca_(2-x)Na_xFeMoO_6制備與磁性研究[D];蘭州大學;2010年
10 曹玉媛;鈣鈦礦異質結構的制備和阻變存儲性能研究[D];南京大學;2015年
,本文編號:2236270
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/huaxue/2236270.html