具有隨機場系數(shù)偏微分方程的最優(yōu)控制問題數(shù)值方法
[Abstract]:In the last ten years, the numerical solution of the optimal control problem with random field coefficient is becoming a new research hotspot. Compared with the deterministic case, the numerical solution of the stochastic optimal control problem is in its infancy. At present, there is not much work in this area [20 / 49 / 81 / 48 / 56 / 54]. In these papers, the optimality conditions of stochastic optimal control problems are derived by using the validity of Lagrange multiplier method and the numerical schemes are given. As far as we know, we first consider the numerical solution of constrained optimal control problem of partial differential equations with random field coefficients, and give the numerical scheme and error estimate. In this paper, the first chapter mainly introduces the research background and current research situation. In chapter 2, we give a stochastic Galerkin approximation scheme for constrained optimal control of parabolic equations with random field coefficients. Firstly, we obtain the optimality conditions of stochastic control problems by using Lions' Lemma, and then transform the stochastic problem into a finite dimensional deterministic optimal control problem by K-L expansion. Then we give a fully discrete scheme of optimality conditions and obtain a priori error estimate for state variables, adjoint state variables and control variables. Finally, a numerical example is given to verify our conclusion. In chapter 3, we study the stochastic Galerkin approximation scheme for constrained optimal control of convection-diffusion equations with random field coefficients. A target functional is a mathematical expectation that minimizes a consumption functional. It is well known that the feature finite element method [32] has good computational stability, and from the actual physical background, it can truly reflect the essence of motion. In this chapter we combine the eigenline method with the stochastic Galerkin method to give the full discrete scheme of the optimal control problem and obtain the error estimates. In chapter 4, we study the stochastic collocation of constrained optimal control problems for elliptic equations with random field coefficients. We give the optimality conditions of the optimal control problem and obtain the priori error estimates for state variables, adjoint state variables and control variables, and verify our conclusion by an example. This chapter mainly introduces the stochastic collocation method and the stochastic Smolyak approximation scheme. When the solution is smooth and the number of random variables is large, the Smolyak approximation scheme is a very efficient collocation method. Can greatly reduce the number of configuration points while ensuring high accuracy. For a more general stochastic optimal control problem, when the state variables have some non-differentiable points or singularities of random variables, we can decompose the probabilistic space according to the non-differentiable points, and adopt the Smolyak approximation scheme on the smooth region. By increasing the number of collocation points in a non-smooth region, the low order Lagrange interpolation function can be used as a base function to approximate the total number of collocation points, and it can also be approximated well on the whole in the case of reducing the total number of collocation points. In chapter 5, we apply the stochastic collocation method to the constrained optimal control problem of parabolic equations with random field coefficients. The full discrete scheme of the optimal control problem and the error estimate of the numerical solution are given.
【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O241.82;O232
【相似文獻】
相關(guān)期刊論文 前10條
1 邢進生,劉人境,李晉玲;一個有效兩階段最優(yōu)控制問題的算法[J];北京電子科技學院學報;2004年04期
2 佟欣;張洪光;;一類生態(tài)系統(tǒng)的最優(yōu)控制問題[J];生物數(shù)學學報;2013年03期
3 俞玉森;評《最優(yōu)控制問題的計算方法》[J];數(shù)學研究與評論;1981年S1期
4 吳鐵軍,呂勇哉;一種求解帶約束最優(yōu)控制問題的算法[J];控制理論與應用;1986年04期
5 卪亮壯;醫(yī)學中的一個最優(yōu)控制問題[J];北京航空學院學報;1988年03期
6 趙寶元;氣-固反應中的一個最優(yōu)控制問題[J];高校應用數(shù)學學報A輯(中文版);1990年02期
7 王玲,李建國,斯洛齊克;解決最優(yōu)控制問題的準梯度方法(英文)[J];控制理論與應用;1999年03期
8 楊然,周鋼,許曉鳴;求解最優(yōu)控制問題的改進辛幾何算法[J];上海交通大學學報;2000年04期
9 楊然,周鋼,許曉鳴;求解最優(yōu)控制問題的改進辛幾何算法[J];上海交通大學學報;2000年05期
10 曾進,任慶生;受約束時間最優(yōu)控制問題罰函數(shù)法收斂性分析[J];上海交通大學學報;2001年07期
相關(guān)會議論文 前10條
1 潘立平;周淵;;線性非二次最優(yōu)控制問題的一種解法[A];第二十七屆中國控制會議論文集[C];2008年
2 張寶琳;樊銘渠;;一類奇異時滯系統(tǒng)奇異二次指標最優(yōu)控制問題的近似方法[A];第二十七屆中國控制會議論文集[C];2008年
3 李春發(fā);陳華;;古地溫度場系統(tǒng)的參數(shù)識別及最優(yōu)控制問題[A];中國運籌學會第六屆學術(shù)交流會論文集(上卷)[C];2000年
4 高彩霞;馮恩民;;一類以脈沖系統(tǒng)為約束最優(yōu)控制問題的優(yōu)化算法[A];中國運籌學會第八屆學術(shù)交流會論文集[C];2006年
5 唐萬生;李光泉;;時變廣義系統(tǒng)最優(yōu)控制問題[A];全國青年管理科學與系統(tǒng)科學論文集(第1卷)[C];1991年
6 雍炯敏;;具有狀態(tài)約束的二階半線性橢圓型方程的最優(yōu)控制問題[A];1991年控制理論及其應用年會論文集(下)[C];1991年
7 肖華;吳臻;;一類線性二次正倒向隨機控制系統(tǒng)的最優(yōu)控制問題[A];第二十三屆中國控制會議論文集(上冊)[C];2004年
8 陶世明;朱經(jīng)浩;;Canonical對偶方法與一類最優(yōu)控制問題[A];中國運籌學會第九屆學術(shù)交流會論文集[C];2008年
9 楊富文;;求一類H~∞最優(yōu)控制問題的非迭代算法[A];1992年中國控制與決策學術(shù)年會論文集[C];1992年
10 王水;朱經(jīng)浩;;線性規(guī)劃在半定二次最優(yōu)控制問題中的應用[A];中國運籌學會第八屆學術(shù)交流會論文集[C];2006年
相關(guān)博士學位論文 前10條
1 邵殿國;若干正倒向隨機比例系統(tǒng)的最優(yōu)控制問題[D];吉林大學;2015年
2 鞏本學;具有隨機場系數(shù)偏微分方程的最優(yōu)控制問題數(shù)值方法[D];山東大學;2016年
3 張穩(wěn);若干微分方程最優(yōu)控制問題的譜方法[D];上海大學;2009年
4 郭磊;混合動態(tài)系統(tǒng)建模、穩(wěn)定性及最優(yōu)控制問題研究[D];山東大學;2006年
5 李彬;含狀態(tài)和控制約束的最優(yōu)控制問題和應用[D];哈爾濱工業(yè)大學;2011年
6 唐躍龍;兩類最優(yōu)控制問題變分離散方法的研究[D];湘潭大學;2012年
7 武利猛;奇異攝動最優(yōu)控制問題的空間對照結(jié)構(gòu)研究[D];華東師范大學;2013年
8 徐琰愷;控制系統(tǒng)的學習和優(yōu)化:馬爾可夫性能勢理論與方法[D];清華大學;2008年
9 趙瑞艷;具有切換結(jié)構(gòu)的非線性系統(tǒng)最優(yōu)控制方法研究[D];中國石油大學;2011年
10 陳麗;時滯隨機系統(tǒng)的最優(yōu)控制問題及應用[D];山東大學;2010年
相關(guān)碩士學位論文 前10條
1 張培勇;時標上一類最優(yōu)控制問題研究[D];貴州大學;2009年
2 管文君;發(fā)展方程的能控性和最優(yōu)控制問題[D];東北師范大學;2015年
3 黃啟燦;數(shù)值天氣預報模式誤差項的最優(yōu)控制問題研究[D];蘭州大學;2015年
4 方研;帶有終端角度和攻擊時間約束的協(xié)同制導律設(shè)計[D];哈爾濱工業(yè)大學;2015年
5 夏云飛;一類滿足Lotka-Volterra互惠關(guān)系的生物種群最優(yōu)控制問題[D];哈爾濱師范大學;2015年
6 邵志政;帶有非線性干擾補償?shù)腁DP控制方法及在風機變槳控制的應用[D];東北大學;2014年
7 李年衛(wèi);一類考慮到敏感因素的最優(yōu)經(jīng)濟模型及計算[D];貴州大學;2008年
8 鄭紅艷;具有約束的生產(chǎn)—庫存管理系統(tǒng)最優(yōu)控制問題[D];哈爾濱理工大學;2009年
9 韋蘭用;最優(yōu)控制問題研究綜述[D];吉林大學;2006年
10 曠雨陽;擬穩(wěn)態(tài)微波加熱系統(tǒng)的最優(yōu)控制問題[D];貴州大學;2007年
,本文編號:2289643
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/yysx/2289643.html