a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

不完全雙二次有限體積元法

發(fā)布時(shí)間:2018-10-24 14:17
【摘要】:有限體積(元)法自上世紀(jì)七十年代末被李榮華教授以廣義差分法的名稱(chēng)提出以來(lái),研究成果層出不窮.該方法涉及到兩套網(wǎng)格剖分和與之對(duì)應(yīng)的兩個(gè)函數(shù)空間:原始網(wǎng)格剖分上的試探函數(shù)空間,對(duì)偶網(wǎng)格剖分上的分片常數(shù)或分片低次多項(xiàng)式空間,即檢驗(yàn)函數(shù)空間.本文取不完全雙二次有限元空間作為試探函數(shù)空間.所謂的不完全雙二次元是指:限制在一個(gè)原始單元上的每個(gè)型值點(diǎn)處的型函數(shù)是一個(gè)不完全雙二次多項(xiàng)式.它的型值定義在四邊形單元的四個(gè)頂點(diǎn)和四邊中點(diǎn)上.本文研究了不完全雙二次元,構(gòu)造了新的數(shù)值方法——不完全雙二次有限體積元法.試探函數(shù)空間取等參的不完全雙二次有限元空間,檢驗(yàn)函數(shù)空間取定義在對(duì)偶單元上的分片常數(shù)函數(shù)空間.構(gòu)造了四種不同的對(duì)偶網(wǎng)格剖分,前兩種是容易想到的非退化的對(duì)偶網(wǎng)格剖分,后兩種是退化的對(duì)偶網(wǎng)格剖分.針對(duì)四種不同的網(wǎng)格分別建立了相應(yīng)的有限體積格式,并給出了穩(wěn)定性分析和收斂性分析.當(dāng)對(duì)偶網(wǎng)格非退化時(shí),給出了格式穩(wěn)定的網(wǎng)格比范圍;當(dāng)對(duì)偶網(wǎng)格退化時(shí),分析格式的穩(wěn)定性條件,發(fā)現(xiàn)此時(shí)雙線(xiàn)性形式限制在一個(gè)單元上對(duì)應(yīng)的矩陣的最小特征值接近于0甚至小于0,說(shuō)明這種格式的雙線(xiàn)性形式在一個(gè)單元上不正定.進(jìn)而證明了基于非退化格式的不完全雙二次有限體積元法按H~1模度量為2階收斂.最后本文使用所構(gòu)造的格式求解Poisson方程的Dirichlet問(wèn)題.數(shù)值結(jié)果表明,前兩種格式的數(shù)值解按H~1模度量達(dá)到了最佳的2階收斂;后兩種格式,其數(shù)值解按H~1模度量為1階收斂.這些結(jié)果進(jìn)一步驗(yàn)證了理論分析的正確性。
[Abstract]:Since the finite volume (element) method was put forward by Professor Li Ronghua in the late 1970s as the name of the generalized difference method, the research results have been produced one after another. This method involves two sets of mesh generation and two corresponding function spaces: the heuristic function space on the original mesh generation, the piecewise constant or the piecewise low degree polynomial space on the dual mesh generation, that is, the test function space. In this paper, the incomplete biquadratic finite element space is taken as the heuristic function space. The so-called incomplete double quadratic element means that the type function at every type value point on a primitive unit is an incomplete biquadratic polynomial. Its type value is defined on the four vertices and midpoints of the quadrilateral element. In this paper, the incomplete double quadratic element is studied, and a new numerical method, the incomplete double quadratic finite volume element method, is constructed. The test function space is the piecewise constant function space defined on the dual element, and the test function space takes the incomplete biquadratic finite element space with isoparametric function space, and the test function space takes the piecewise constant function space defined on the dual element. Four different dual meshes are constructed. The first two are non-degenerate dual meshes which are easy to think of, and the latter two are degenerate dual meshes. The finite volume schemes are established for four different meshes, and the stability analysis and convergence analysis are given. When the dual mesh is nondegenerate, the stable mesh ratio range is given, and the stability condition of the scheme is analyzed when the dual grid is degenerate. It is found that the minimum eigenvalue of the matrix of bilinear form is close to 0 or less than 0, which indicates that the bilinear form of bilinear form is not positive definite on a unit. Furthermore, it is proved that the incomplete biquadratic finite volume element method based on nondegenerate scheme is of second order convergence according to the metric of H1 norm. Finally, we use the constructed scheme to solve the Dirichlet problem of Poisson equation. The numerical results show that the numerical solutions of the first two schemes have the best convergence of order 2 according to the metric of the first two schemes, and the numerical solutions of the latter two schemes have the convergence of the first order according to the metric of the first norm. These results further verify the correctness of the theoretical analysis.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O241.8

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李久平;袁益讓;;三維電阻抗成像的體積元方法的數(shù)值模擬和分析[J];計(jì)算數(shù)學(xué);2008年01期

2 耿加強(qiáng);畢春加;;二階雙曲方程的間斷有限體積元方法[J];煙臺(tái)大學(xué)學(xué)報(bào)(自然科學(xué)與工程版);2009年02期

3 賈保敏;楊青;;非線(xiàn)性擬雙曲方程的有限體積元方法[J];科學(xué)技術(shù)與工程;2009年16期

4 陳國(guó)榮;王雪玲;熊之光;;一類(lèi)參數(shù)識(shí)別問(wèn)題的有限體積元計(jì)算[J];衡陽(yáng)師范學(xué)院學(xué)報(bào);2011年03期

5 張本良;3-動(dòng)量體積元的局域洛侖茲形變及減除噴注中粒子測(cè)定的背景[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1990年04期

6 豐連海;求解二階橢圓型偏微分方程的一種有限體積元格式[J];工程數(shù)學(xué)學(xué)報(bào);2002年04期

7 高夫征;賈尚輝;;一類(lèi)完全非線(xiàn)性?huà)佄锓匠探M的高次有限體積元方法及分析[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2005年S1期

8 朱愛(ài)玲;;拋物方程的擴(kuò)展混合體積元方法[J];山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期

9 陳長(zhǎng)春;;四階波動(dòng)方程的有限體積元法[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

10 楊素香;;二維不可壓縮無(wú)粘流動(dòng)問(wèn)題的特征混合體積元的數(shù)值模擬[J];山東科學(xué);2007年05期

相關(guān)會(huì)議論文 前2條

1 張陽(yáng);;一類(lèi)非線(xiàn)性?huà)佄镄头匠谈叽斡邢摅w積元的預(yù)測(cè)-校正格式及其最優(yōu)L~2模誤差估計(jì)[A];第四屆全國(guó)青年計(jì)算物理學(xué)術(shù)會(huì)議論文摘要集[C];2006年

2 曾志;李君利;許振華;邱睿;;質(zhì)子劑量的Monte Carlo計(jì)算方法[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年

相關(guān)博士學(xué)位論文 前10條

1 朱玲;兩類(lèi)界面問(wèn)題的有限體積元方法[D];南京師范大學(xué);2015年

2 閆金亮;波方程中一些新的能量守恒有限體積元方法[D];南京師范大學(xué);2016年

3 高艷妮;界面問(wèn)題的有限體積元法研究[D];吉林大學(xué);2016年

4 王翔;三角形網(wǎng)格上高次有限體積元法的L~2估計(jì)和超收斂[D];吉林大學(xué);2016年

5 田萬(wàn)福;混合有限體積元法[D];吉林大學(xué);2010年

6 王全祥;流體力學(xué)中幾類(lèi)波方程的有限體積元方法[D];南京師范大學(xué);2013年

7 方志朝;發(fā)展型方程的混合有限體積元方法及數(shù)值模擬[D];內(nèi)蒙古大學(xué);2013年

8 丁玉瓊;解二階橢圓型方程的高次有限體積元法的若干研究[D];吉林大學(xué);2010年

9 楊e,

本文編號(hào):2291644


資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/yysx/2291644.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)f9b53***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
91精品国产高清91久久久久久| 老熟妇仑乱一区二区视頻| 宁波市| 内射在线| 久久久久黄| 免费在线观看日韩大片| 欧美黄色a| 色综合| 999电影| 亚洲国产精品成人综合久久久| 国精产品一区一区三区有限在线| 欧美老熟妇乱子伦视频| 亚洲AV无码久久| 精品国产午夜福利精品推荐| 无码人妻精品一区二区三区| 欧美日本国产VA高清CABAL| 少妇人妻偷人精品视频| 狠狠噜天天噜日日噜视频麻豆| 国产精品夜间视频香蕉| 久久无码中文字幕东京热| 亚洲AV综合色区无码一二三区| 欧洲国产伦久久久久久久| 日韩丝袜欧美人妻制服| 国产精品99精品一区二区三区| 多毛老太| 国产精品1| 强睡邻居人妻中文字幕| 高陵县| jizz国产精品网站| 18禁无遮挡羞羞啪啪免费网站| 色婷婷综合久久久久中文字幕 | 午夜伦理| 免费亚洲av| 久久热网站| 久久久久人妻一区精品色奶水 | 国产精品一区二区久久国产| 一本综合丁香日日狠狠色| 无线乱码一二三区免费看| 国产精品亚洲LV粉色| 动漫精品啪啪一区二区三区| 亚洲伊人久久精品影院|