奶牛個(gè)體反芻行為監(jiān)測(cè)技術(shù)研究
本文選題:奶牛 + 反芻監(jiān)測(cè); 參考:《東北農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:畜牧業(yè)的每一次飛躍,都伴隨著一場(chǎng)技術(shù)革新,快速發(fā)展的同時(shí),也暴露出當(dāng)前我國(guó)牧場(chǎng)養(yǎng)殖體系的缺口,雖然已經(jīng)成為第三大奶業(yè)生產(chǎn)國(guó)家,但我國(guó)依舊存在牛源緊缺,牧場(chǎng)管理方式落后,奶制品供給量達(dá)不到標(biāo)準(zhǔn)等問(wèn)題,并且我國(guó)目前多數(shù)大規(guī)模牧場(chǎng)引進(jìn)國(guó)外先進(jìn)設(shè)備對(duì)奶牛反芻行為進(jìn)行實(shí)時(shí)監(jiān)測(cè),但其技術(shù)壟斷,研發(fā)成本高昂。為此,本文研究了奶牛個(gè)體反芻行為檢測(cè)設(shè)備,實(shí)現(xiàn)成本較低,可自動(dòng)化檢測(cè)奶牛反芻行為,從而掌握奶牛個(gè)體發(fā)情及身體健康情況,減少牧場(chǎng)人力物力,提升牧場(chǎng)工作效率,增添牧場(chǎng)收益。首先,對(duì)奶牛個(gè)體反芻行為檢測(cè)設(shè)備進(jìn)行總體方案設(shè)計(jì)。主要包括設(shè)計(jì)需求、功能分析、總體設(shè)計(jì)以及工作原理,同時(shí),對(duì)設(shè)備的抗干擾性進(jìn)行設(shè)計(jì),并從技術(shù)可行性以及經(jīng)濟(jì)可行性對(duì)設(shè)備進(jìn)行可行性分析。隨后,對(duì)奶牛個(gè)體反芻行為檢測(cè)設(shè)備進(jìn)行硬件系統(tǒng)的詳細(xì)設(shè)計(jì)。選用MSP430F149型號(hào)單片機(jī)作為該設(shè)備的主處理器,LM386聲音傳感器采集奶牛反芻及采食時(shí)的聲音信號(hào),并為此設(shè)備設(shè)計(jì)信號(hào)調(diào)理模塊,采用場(chǎng)效應(yīng)管高輸入阻抗差動(dòng)放大器進(jìn)行聲音信號(hào)的放大,選用二階帶通有源濾波器對(duì)聲音信號(hào)進(jìn)行濾波,應(yīng)用mocro SDHC UHS-l存儲(chǔ)卡對(duì)信息進(jìn)行存儲(chǔ)。因?yàn)槟膛7雌c多數(shù)發(fā)生在夜晚并且不宜受到外界的干擾,所以數(shù)據(jù)傳輸模塊選用基于Zig Bee的無(wú)線傳輸方式。采用RFID射頻技術(shù)對(duì)奶牛個(gè)體身份進(jìn)行識(shí)別。本設(shè)備的設(shè)計(jì)以低功耗為原則,故又對(duì)設(shè)備的供電方式進(jìn)行全面分析,最終選取鋰亞電池對(duì)設(shè)備進(jìn)行供電。最后,對(duì)奶牛個(gè)體反芻聲音識(shí)別算法進(jìn)行研究設(shè)計(jì)并移植到奶牛個(gè)體反芻行為檢測(cè)設(shè)備中進(jìn)行模擬仿真實(shí)驗(yàn)。應(yīng)用Cool Edit Pro軟件對(duì)奶牛反芻及采食行為的聲音頻譜進(jìn)行特征分析,應(yīng)用預(yù)加重以及加漢明窗方式將聲音信號(hào)做預(yù)處理,并獲取聲音信號(hào)短時(shí)平均能量以及短時(shí)平均過(guò)零率,以此對(duì)奶牛反芻聲音信號(hào)進(jìn)行時(shí)域分析。隨后應(yīng)用LPCC倒譜系數(shù)對(duì)奶牛反芻聲音信號(hào)進(jìn)行頻域特征提取,得出奶牛反芻聲音頻率大約在400Hz-1KHz左右。將此算法移植到奶牛個(gè)體反芻行為檢測(cè)設(shè)備中,通過(guò)對(duì)比發(fā)現(xiàn)該算法能夠較好的檢測(cè)奶牛的反芻行為,可靠性較高。應(yīng)用錄音儀器在農(nóng)場(chǎng)采集連續(xù)5天同一頭奶牛的反芻及采食的聲音,應(yīng)用本設(shè)備對(duì)錄音儀器進(jìn)行5輪每輪5天的奶牛反芻次數(shù)模擬檢測(cè),實(shí)驗(yàn)結(jié)果表明,該設(shè)備性能穩(wěn)定,可靠性較高,精準(zhǔn)度達(dá)90%,可以有效的對(duì)奶牛反芻行為進(jìn)行檢測(cè)。綜上所述,本文研究的奶牛個(gè)體反芻行為檢測(cè)設(shè)備具備奶牛反芻行為的檢測(cè)、反芻次數(shù)的測(cè)量以及數(shù)據(jù)無(wú)線傳輸?shù)墓δ。?yīng)用嵌入式、單片機(jī)、傳感器、無(wú)線傳輸?shù)燃夹g(shù),實(shí)現(xiàn)了自動(dòng)化、智能化、信息化的監(jiān)測(cè)奶牛反芻行為,為我國(guó)畜牧業(yè)的長(zhǎng)足發(fā)展提供了支持。該設(shè)備實(shí)現(xiàn)成本低、易操作、精度較高、穩(wěn)定性較好,對(duì)奶牛個(gè)體的身體健康狀況以及發(fā)情情況具有良好的指導(dǎo)性作用。
[Abstract]:Each leap forward in animal husbandry has been accompanied by a technological innovation and rapid development, at the same time, it has also exposed the gap in the current pastureland farming system in China. Although it has become the third largest dairy production country, there is still a shortage of cattle resources in our country. The management of pasture is backward, the supply of dairy products is not up to the standard, and most of the large-scale pastures in our country introduce foreign advanced equipment to monitor the ruminant behavior in real time, but its technology monopoly and high cost of research and development. Therefore, this paper studies the equipment of individual ruminant behavior detection in dairy cattle, which can realize low cost and can automatically detect cow ruminant behavior, so as to master individual estrus and body health of dairy cow, reduce manpower and material resources of pasture, and improve the efficiency of pasture work. Increase pasture income. First of all, the overall scheme design of individual ruminant behavior testing equipment is carried out. It mainly includes design requirements, function analysis, general design and working principle. At the same time, the anti-interference ability of the equipment is designed, and the feasibility of the equipment is analyzed from the technical feasibility and economic feasibility. Then, the detailed design of the hardware system for individual ruminant behavior detection equipment of dairy cattle was carried out. The MSP430F149 singlechip was chosen as the main processor of the equipment, and the LM386 sound sensor was used to collect the sound signals of cow ruminating and feeding, and the signal conditioning module was designed for this equipment. The high input impedance differential amplifier of FET is used to amplify the sound signal, the second order band-pass active filter is used to filter the sound signal, and the mocro SDHC UHS-l memory card is used to store the information. Because most cows ruminant occurs at night and is unsuitable for outside interference, the wireless transmission mode based on Zig Bee is used in the data transmission module. RFID radio frequency technology was used to identify the individual identity of dairy cattle. The design of the equipment is based on the principle of low power consumption, so the power supply mode of the equipment is analyzed comprehensively, and the lithium subbattery is selected to supply the power to the equipment. Finally, the algorithm of individual ruminant recognition is studied and designed and transplanted to the individual ruminant behavior detection equipment to simulate the simulation experiment. The acoustic spectrum of ruminant and feeding behavior of dairy cattle was analyzed by Cool Edit Pro software. The sound signal was preprocessed by pre-weighting and Hanming window, and the short time average energy and zero crossing rate of sound signal were obtained. The time domain analysis of the ruminant sound signal was carried out. LPCC cepstrum coefficient was then used to extract the frequency feature of the ruminant sound signal, and the frequency of ruminant sound was about 400Hz-1KHz. The algorithm is transplanted into the equipment for individual ruminant behavior detection of dairy cows. It is found that the algorithm can detect the ruminant behavior of dairy cows better and has higher reliability. The sound of ruminating and feeding of the same cow was collected by recording instrument in farm for 5 consecutive days. The equipment was used to simulate the ruminant times of dairy cows for 5 rounds and 5 days per round. The experimental results showed that the equipment was stable in performance. The reliability is high and the precision is 90, which can effectively detect the ruminant behavior of dairy cows. To sum up, the equipment of individual ruminant behavior detection in this paper has the functions of testing cow ruminant behavior, measuring ruminant times and wireless data transmission. With the application of embedded technology, single chip computer, sensor and wireless transmission technology, automatic, intelligent and informational monitoring of cow ruminant behavior has been realized, which has provided support for the rapid development of animal husbandry in China. The equipment has the advantages of low cost, easy operation, high precision and good stability. It has a good instructive effect on the individual health and estrus of dairy cow.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S823;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王愛(ài)華;;單片機(jī)課程教學(xué)改革探討[J];黑龍江科技信息;2015年28期
2 郭利亞;王加啟;李發(fā)弟;;現(xiàn)代奶業(yè)建設(shè)背景下對(duì)我國(guó)奶牛生產(chǎn)性能測(cè)定的思考及對(duì)策建議[J];中國(guó)畜牧雜志;2015年12期
3 張海濤;;單片機(jī)實(shí)踐教學(xué)應(yīng)用研究[J];辦公自動(dòng)化;2015年12期
4 朱孟帥;趙璞;劉佳佳;熊露;張建華;;畜牧業(yè)現(xiàn)代化亟需物聯(lián)網(wǎng)的技術(shù)支撐[J];中國(guó)畜禽種業(yè);2015年02期
5 張建華;趙璞;劉佳佳;朱孟帥;;物聯(lián)網(wǎng)在奶牛養(yǎng)殖中的應(yīng)用及展望[J];農(nóng)業(yè)展望;2014年10期
6 沈維政;鄭爽;初永良;孔慶明;;基于ADXL345的奶牛活動(dòng)量采集系統(tǒng)設(shè)計(jì)[J];東北農(nóng)業(yè)大學(xué)學(xué)報(bào);2014年10期
7 王兆雅;;淺析印制電路板的焊接缺陷[J];科技與企業(yè);2014年11期
8 Schirmann K;武江利;;產(chǎn)犢前后奶牛反芻行為和采食行為變化的研究[J];中國(guó)畜牧獸醫(yī);2013年12期
9 張割;馬喬兵;;基于電子設(shè)備的可靠性設(shè)計(jì)技術(shù)分析[J];電子世界;2013年22期
10 楊榮文;錢正洪;朱華辰;白茹;;一種自旋閥GMR隔離放大器設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2013年22期
相關(guān)博士學(xué)位論文 前4條
1 蓋建新;基于MWC的稀疏寬帶信號(hào)亞奈奎斯特采樣技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年
2 楊開(kāi)紅;奶牛圍產(chǎn)期血液生理生化指標(biāo)動(dòng)態(tài)變化的研究[D];揚(yáng)州大學(xué);2013年
3 申軍士;日糧能氮釋放同步性對(duì)奶牛瘤胃代謝、生產(chǎn)效率與性能的影響研究[D];浙江大學(xué);2013年
4 丁治國(guó);RFID關(guān)鍵技術(shù)研究與實(shí)現(xiàn)[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 鄭爽;奶牛個(gè)體生理參數(shù)多源感知設(shè)備設(shè)計(jì)與實(shí)現(xiàn)[D];東北農(nóng)業(yè)大學(xué);2015年
2 蔡勇;牛體表溫度自動(dòng)采集系統(tǒng)研發(fā)及其與體內(nèi)溫度擬合曲線的研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年
3 何孟寧;奶牛數(shù)字化管理的關(guān)鍵技術(shù)研究[D];山東大學(xué);2015年
4 魏林海;基于功耗優(yōu)化及數(shù)字校準(zhǔn)算法的Pipeline ADC系統(tǒng)建模與仿真[D];電子科技大學(xué);2015年
5 姚意;基于ANT的奶牛反芻信息采集系統(tǒng)研究[D];東華大學(xué);2015年
6 任艷慧;帶自校準(zhǔn)的14位逐次逼近模數(shù)轉(zhuǎn)換器設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2013年
7 韓青;八五八農(nóng)場(chǎng)托牛所奶牛養(yǎng)殖模式經(jīng)濟(jì)效益研究[D];東北農(nóng)業(yè)大學(xué);2013年
8 何健;綿羊牧草行為圖像采集裝置的設(shè)計(jì)[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2013年
9 朱遇元;電子產(chǎn)品設(shè)計(jì)缺陷的檢驗(yàn)[D];南昌大學(xué);2013年
10 梁素真;基于虛擬儀器的奶牛采食量檢測(cè)系統(tǒng)的研究[D];河北農(nóng)業(yè)大學(xué);2011年
,本文編號(hào):1975795
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/zidonghuakongzhilunwen/1975795.html