不同苜蓿品種秋眠級(jí)評(píng)定及其對(duì)越冬率的影響機(jī)理
本文選題:苜蓿 + 秋眠性。 參考:《中國(guó)農(nóng)業(yè)科學(xué)院》2016年博士論文
【摘要】:秋眠性是紫花苜蓿(Medicago sativa L.)(以下簡(jiǎn)稱“苜蓿”)對(duì)晚秋生長(zhǎng)環(huán)境變化的一種適應(yīng)性反應(yīng),是實(shí)現(xiàn)越冬、返青等過(guò)程的關(guān)鍵基礎(chǔ),秋眠性已被作為草地栽培與種植區(qū)劃的主要依據(jù)之一。本研究以國(guó)外引進(jìn)和國(guó)內(nèi)審定登記的苜蓿品種為試驗(yàn)材料,以11個(gè)國(guó)際標(biāo)準(zhǔn)秋眠級(jí)苜蓿品種為對(duì)照材料,按照Teuber等方法對(duì)所有供試材料進(jìn)行秋眠級(jí)和抗寒指數(shù)的評(píng)價(jià),進(jìn)而闡述秋眠級(jí)對(duì)建植次年苜蓿生產(chǎn)性能、越冬階段根系性狀及相關(guān)基因表達(dá)的影響,利用二代測(cè)序平臺(tái)對(duì)不同秋眠型苜蓿根系進(jìn)行轉(zhuǎn)錄組測(cè)序分析,篩選不同秋眠級(jí)苜蓿的差異表達(dá)基因,并研究差異基因的表達(dá)模式及可能參與的代謝通路,旨在為揭示苜蓿秋眠性的分子機(jī)理提供理論依據(jù)。主要結(jié)論如下:1.我國(guó)審定的苜蓿品種基本上屬于秋眠型,秋眠性較強(qiáng),其中公農(nóng)2號(hào)、公農(nóng)3號(hào)、海拉爾苜蓿及龍牧系列苜蓿品種的秋眠級(jí)為1級(jí),甘農(nóng)1號(hào)的秋眠級(jí)為2級(jí)。秋眠級(jí)對(duì)苜蓿建植次年第一茬產(chǎn)量等生產(chǎn)性能無(wú)顯著影響,盡管夏季生長(zhǎng)階段株高與秋眠級(jí)之間沒(méi)有關(guān)系,但不同秋眠級(jí)苜蓿的莖稈伸長(zhǎng)策略顯著不同,節(jié)間長(zhǎng)和節(jié)間數(shù)與秋眠級(jí)或秋眠類型顯著相關(guān),高秋眠級(jí)(弱秋眠性)苜蓿的節(jié)間長(zhǎng)較長(zhǎng),但節(jié)間數(shù)卻隨著秋眠級(jí)的增加呈遞減趨勢(shì)。2.通過(guò)對(duì)46個(gè)苜蓿品種(材料)秋眠級(jí)與抗寒指數(shù)、越冬率的關(guān)系進(jìn)行分析發(fā)現(xiàn),苜蓿秋眠級(jí)與抗寒指數(shù)呈極顯著的正相關(guān)關(guān)系,與越冬率呈極顯著的負(fù)相關(guān)關(guān)系,即秋眠性越強(qiáng),苜蓿的越冬能力越強(qiáng)。不同秋眠級(jí)苜蓿的根系性狀表現(xiàn)出對(duì)越冬低溫脅迫的差異化響應(yīng)特征,苜蓿主要通過(guò)增加根頸直徑和側(cè)根數(shù)來(lái)提高其抗寒性,并不取決于根系其他表型性狀的絕對(duì)大小。3.在低溫馴化階段,隨著秋眠級(jí)的增加,標(biāo)準(zhǔn)秋眠級(jí)苜蓿葉綠素含量、凈光合速率呈現(xiàn)先增加后降低的趨勢(shì),葉片可溶性糖含量呈現(xiàn)下降的趨勢(shì)。越冬期標(biāo)準(zhǔn)品種苜蓿根頸、主根、側(cè)根氨基酸含量隨秋眠級(jí)表現(xiàn)一致的變化規(guī)律,隨著苜蓿秋眠性增強(qiáng),各種氨基酸呈現(xiàn)顯著的增加態(tài)勢(shì)。隨著秋眠性的增強(qiáng),越冬期標(biāo)準(zhǔn)品種苜蓿根頸、主根、側(cè)根抗寒基因cas18、vsp、corF的表達(dá)量呈現(xiàn)顯著的增加趨勢(shì)。4.應(yīng)用Illumina NextSeq 500測(cè)序平臺(tái),對(duì)秋眠1級(jí)和9級(jí)的苜蓿根系樣品進(jìn)行轉(zhuǎn)錄組測(cè)序,共獲得23,470個(gè)Unigene。其中16,190個(gè)Unigene被注釋到一個(gè)或多個(gè)GO條目中,7,696個(gè)Unigene被成功注釋到KEGG蛋白數(shù)據(jù)庫(kù)的5條KEGG生化途徑和321個(gè)代謝通路中,18,617個(gè)Unigene被注釋到eggNOG蛋白數(shù)據(jù)庫(kù)的25個(gè)功能類別中。經(jīng)差異表達(dá)分析,共檢測(cè)到2,326個(gè)差異表達(dá)基因,其中包括1,308個(gè)上調(diào)表達(dá)基因和1,018個(gè)下調(diào)表達(dá)基因。1,721個(gè)差異表達(dá)基因獲得了GO功能注釋。差異表達(dá)基因顯著富集在能量代謝過(guò)程、次級(jí)代謝物的生物合成過(guò)程、碳水化合物代謝過(guò)程及氨基酸代謝過(guò)程等。此外,從苜蓿根系轉(zhuǎn)錄組中鑒定出1,497個(gè)轉(zhuǎn)錄因子和7,005個(gè)SSR。
[Abstract]:Autumn dormancy is Medicago sativa L. (hereinafter referred to as "alfalfa") an adaptive response to the late autumn growth environment is the key basis for the process of overwintering and returning to green. Autumn dormancy has been regarded as one of the main bases of grassland cultivation and planting regionalization. In this study, 11 international standard alfalfa varieties were used as experimental materials and 11 international standard alfalfa varieties were used as control materials. All the tested alfalfa varieties were evaluated for fall dormancy grade and cold resistance index according to Teuber and other methods. Furthermore, the effects of autumn dormancy on alfalfa production performance, root traits and related gene expression in winter stage were discussed, and transcriptional sequence analysis of different autumn dormant alfalfa roots was carried out by using the second generation sequencing platform. The differentially expressed genes of alfalfa with different fall dormancy levels were screened, and the expression patterns of differential genes and the metabolic pathways involved were studied in order to provide theoretical basis for revealing the molecular mechanism of autumn dormancy of alfalfa. The main conclusions are as follows: 1. The alfalfa varieties approved in our country basically belong to autumn dormancy type and have strong autumn dormancy. Among them, Gongnong 2, Gong Nong 3, Hailaer alfalfa and Longmu series alfalfa varieties have autumn dormancy grade 1 and Gannong 1 fall dormancy grade 2. Autumn dormancy had no significant effect on the first crop yield of alfalfa in the following year. Although there was no relationship between plant height and autumn dormancy in summer, the culm elongation strategies of alfalfa of different autumn dormancy levels were significantly different. Internode length and internode number were significantly correlated with autumn dormancy or fall dormancy type. The internode length of alfalfa with high autumn dormancy (weak autumn dormancy) was longer, but the internode number decreased with the increase of autumn dormancy. Based on the analysis of the relationship between fall dormancy grade and winter resistance index and winter resistance rate of 46 alfalfa varieties (materials), it was found that there was a very significant positive correlation between autumn hibernation level and winter resistance index, and a very significant negative correlation between fall hibernation level and wintering rate of alfalfa. That is, the stronger the autumn sleep, the stronger the winter ability of alfalfa. The root characters of different autumn dormancy alfalfa showed differential response to overwintering low temperature stress. Alfalfa improved its cold resistance mainly by increasing the diameter of root neck and the number of lateral roots, and did not depend on the absolute size of other phenotypic characters of root. In the low temperature acclimation stage, the chlorophyll content and net photosynthetic rate of standard autumn dormancy alfalfa increased first and then decreased, and the soluble sugar content of leaf decreased with the increase of autumn dormancy level. The content of amino acids in root neck, main root and lateral root of alfalfa during wintering period showed the same change rule with autumn dormancy grade. With the increase of autumn dormancy of alfalfa, all kinds of amino acids showed a significant increase trend. With the increase of autumn dormancy, the expression of root neck, main root and lateral root resistance gene cas18vspspcorF of standard varieties of alfalfa in overwintering stage showed a significant increasing trend .4. Using Illumina NextSeq 500 sequencing platform, 23470 Unigenes were obtained from alfalfa root samples of autumn sleep level 1 and 9 by transcriptome sequencing. 16190 Unigene were annotated into one or more go items, 7696 Unigene were successfully annotated into 5 KEGG biochemical pathways and 321 metabolic pathways in KEGG protein database, and 1 617 Unigene were annotated into 25 functional categories of eggNOG protein database. A total of 2326 differentially expressed genes were detected by differential expression analysis, including 1308 up-regulated genes and 1018 down-regulated genes. Differentially expressed genes were significantly enriched in energy metabolism, biosynthesis of secondary metabolites, carbohydrate metabolism and amino acid metabolism. In addition, 1497 transcription factors and 7005 SSRs were identified from alfalfa root transcriptome.
【學(xué)位授予單位】:中國(guó)農(nóng)業(yè)科學(xué)院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S541.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 倪俊霞;李冠真;史瑩華;嚴(yán)學(xué)兵;樊文娜;杜紅旗;王成章;;溫度對(duì)不同秋眠型紫花苜蓿光敏色素和內(nèi)源激素的影響[J];草地學(xué)報(bào);2013年04期
2 李平;孫杰;邢建軍;;論苜蓿的起源與傳播[J];內(nèi)蒙古草業(yè);2012年01期
3 李平;楊玲玲;陳其新;史瑩華;嚴(yán)學(xué)兵;陳占寬;王成章;;兩種策略分別克隆紫花苜蓿光敏色素A、B基因[J];草業(yè)學(xué)報(bào);2011年06期
4 王紅柳;岳征文;盧欣石;;基于近紅外光譜技術(shù)與支持向量機(jī)的苜蓿秋眠類型測(cè)定研究[J];光譜學(xué)與光譜分析;2011年06期
5 樊文娜;嚴(yán)學(xué)兵;王成章;;苜蓿秋眠性調(diào)控機(jī)理的初步研究[J];草業(yè)科學(xué);2010年11期
6 嚴(yán)秀將;馮長(zhǎng)松;盧欣石;;北京地區(qū)不同秋眠級(jí)苜蓿品種生長(zhǎng)動(dòng)態(tài)比較[J];草業(yè)科學(xué);2009年06期
7 史瑩華;張偉毅;于曉丹;王成章;;光周期對(duì)紫花苜蓿SOD、POD活性的影響[J];草原與草坪;2009年01期
8 曹琴,孔維府,溫鵬飛;植物抗寒及其基因表達(dá)研究進(jìn)展[J];生態(tài)學(xué)報(bào);2004年04期
相關(guān)碩士學(xué)位論文 前3條
1 徐大偉;11個(gè)秋眠級(jí)苜蓿(Medicago sativa)標(biāo)準(zhǔn)對(duì)照品種生長(zhǎng)適應(yīng)性研究[D];北京林業(yè)大學(xué);2011年
2 張亞軍;紫花苜蓿光敏色素A(phyA)基因片段的克隆及其RNA干擾(RNAi)載體的構(gòu)建[D];河南農(nóng)業(yè)大學(xué);2010年
3 楊玲玲;RACE法克隆紫花苜蓿光敏色素A基因[D];河南農(nóng)業(yè)大學(xué);2008年
,本文編號(hào):1908596
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1908596.html