基于矢量水聽器的高指向性二階水聽器的研究
[Abstract]:Small and medium-sized underwater measuring platform is a common equipment for detecting and locating underwater targets. The array space of this kind of platform is small, and it is not suitable for installing large aperture array of underwater acoustic sensors. The application of single vector hydrophone in the platform has played a good role in improving the performance of the platform, but its beam angle is large, and this kind of blunt finger. It is difficult to obtain high azimuth resolution in the process of target localization, and it is more difficult to distinguish multiple targets which are close to each other. Therefore, it is still necessary to develop high directivity hydrophones with sharper directivity to improve the performance of the platform on small and medium-sized measuring platforms. High directivity second-order hydrophones are relay vector hydrophones. Then a new type of underwater acoustic sensor, compared with the vector hydrophone, the second-order hydrophone has a sharper quadrupole directivity. Its outstanding feature is that it has the ability to measure the second-order tensor in the acoustic field. Therefore, it is necessary to carry out the physical basic research and Engineering Research on the high-directivity second-order hydrophone. The basic theory of high directivity second-order hydrophone is studied firstly. The physical problems of underwater acoustic are discussed by using the concept of tensor, and the tensors measured by second-order hydrophone are studied by using the theory of pressure decomposition. The physical meaning of particle velocity and velocity gradient in fluid acoustic field is discussed. The velocity gradient tensor and the commonly used acoustic physical quantities are explained. Theoretical analysis proves that the non-uniformity of sound pressure at each point in the fluid microcluster in the sound field is the fundamental reason for the movement of the fluid microcluster. The particle velocity can describe the translation motion of the fluid microcluster, and the velocity gradient can describe the deformation and rotation of the fluid microcluster. The directivity performance of the second-order hydrophone is compared with that of the vector hydrophone. Theoretical analysis shows that the beam width of the quadrupole directivity of the second-order hydrophone is less than that of the dipole directivity of the vector hydrophone. The directivity of the second-order hydrophone is proved by comparing the beam width of the same combination of the two hydrophones. In this paper, the design theory of high directivity second-order hydrophone is studied. The measuring principle of second-order hydrophone is discussed. The spatial structure of second-order hydrophone is given. A high directivity second-order hydrophone based on vector hydrophone is designed. It consists of six three-dimensional vector hydrophones and one pressure hydrophone. Six three-dimensional vector hydrophones can be simplified to two-dimensional when used in planar wavelengths. The high directivity second-order hydrophones are analyzed by the equivalent circuit method. The pressure sensitivity expressions of each channel of the second-order hydrophones are derived and the correctness of the formulas is verified. The influence of vector hydrophone mismatch on the upper and lower limit operating frequency of the second-order hydrophone is studied. The approximate measuring principle of the second-order hydrophone and the influence of vector hydrophone mismatch on the directivity of the second-order hydrophone are simulated and analyzed. There are three kinds of second-order hydrophones: small uniaxial second-order hydrophone with upper limit operating frequency of 2 kHz, medium uniaxial second-order hydrophone with upper limit operating frequency of 2.5 kHz and complex structure third-axial second-order hydrophone with upper limit operating frequency of 1.6 kHz. Sensitivity level and the variation curve of pressure sensitivity level with frequency are given. Three kinds of second-order hydrophones are modeled. The acoustic scattering of the second-order hydrophone in the sound field is simulated and analyzed by finite element analysis software. The influence of scattering on the sound pressure and phase near the second-order hydrophone is discussed. At the same time, the second-order hydrophone is simulated and analyzed. The directivity of each channel and the amplitude and phase mismatch of the vector hydrophone caused by acoustic scattering are tested. The performance of three kinds of vector hydrophone prototypes designed and manufactured are tested. The directivity and sensitivity are given. The combined high directivity second-order hydrophone prototypes are tested and the second-order hydrophones are given. The measured directivity diagram and sensitivity curve of the channel are in good agreement with the theoretical values. The causes of the difference between the measured directivity and the theoretical directivity of the second-order hydrophone are discussed. Some conclusions of the simulation analysis of the directivity of the second-order hydrophone are verified. The amplitude and phase mismatch of the vector hydrophone are analyzed by the experimental data. The phenomena consistent with the finite element simulation analysis are obtained, and the actual measurement error of the second-order hydrophone is estimated. It is proved that the second-order hydrophone prototype meets the design requirements.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TB565.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳洪娟;楊士莪;王智元;洪連進(jìn);;中頻小型矢量水聽器設(shè)計研究[J];應(yīng)用聲學(xué);2006年06期
2 陳麗潔;楊士莪;;矢量水聽器測試模型及拾振條件探討[J];應(yīng)用聲學(xué);2006年06期
3 喬慧;劉俊;張斌珍;張文棟;熊繼軍;薛晨陽;;一種新型壓阻式硅微仿生矢量水聽器的設(shè)計[J];傳感技術(shù)學(xué)報;2008年02期
4 彭漢書;李風(fēng)華;;由矢量水聽器陣列反演淺海地聲參數(shù)[J];聲學(xué)技術(shù);2008年02期
5 賈志富;;全面感知水聲信息的新傳感器技術(shù)——矢量水聽器及其應(yīng)用[J];物理;2009年03期
6 關(guān)凌綱;張國軍;薛晨陽;藍(lán)偉軍;;三維同振柱型矢量水聽器的制作[J];艦船科學(xué)技術(shù);2009年09期
7 徐余;孫好廣;;矢量水聽器振子實現(xiàn)研究[J];聲學(xué)與電子工程;2010年02期
8 王立;劉文怡;張國軍;;仿生矢量水聽器水下監(jiān)測記錄裝置[J];計算機(jī)測量與控制;2011年01期
9 洪連進(jìn);楊德森;時勝國;邢世文;;中頻三軸向矢量水聽器的研究[J];振動與沖擊;2011年03期
10 牛嗣亮;張振宇;胡永明;倪明;;單矢量水聽器的姿態(tài)修正測向問題探討[J];國防科技大學(xué)學(xué)報;2011年06期
相關(guān)會議論文 前10條
1 陳洪娟;張虎;趙勰;;三維同振球形矢量水聽器的小型化研究[A];2009年全國水聲學(xué)學(xué)術(shù)交流暨水聲學(xué)分會換屆改選會議論文集[C];2009年
2 孫梅;李風(fēng)華;;一種矢量水聽器俯仰姿態(tài)校正方法研究[A];中國聲學(xué)學(xué)會2009年青年學(xué)術(shù)會議[CYCA’09]論文集[C];2009年
3 許欣然;葛輝良;孟洪;白琳瑯;鄭震宇;;矢量水聽器聲性能的理論建模分析[A];2009年中國東西部聲學(xué)學(xué)術(shù)交流會論文集[C];2009年
4 高源;杜選民;;單個矢量水聽器空間處理增益分析[A];2004年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2004年
5 熊水東;羅洪;胡永明;倪明;孟洲;;三維光纖矢量水聽器實驗研究[A];中國聲學(xué)學(xué)會2005年青年學(xué)術(shù)會議[CYCA'05]論文集[C];2005年
6 胡永明;倪明;孟洲;熊水東;;光纖矢量水聽器研究進(jìn)展[A];中國聲學(xué)學(xué)會2006年全國聲學(xué)學(xué)術(shù)會議論文集[C];2006年
7 馬莉;;基于矢量水聽器的目標(biāo)定向技術(shù)研究[A];湖北省聲學(xué)學(xué)會成立二十周年紀(jì)念文集[C];2006年
8 李風(fēng)華;彭漢書;;矢量水聽器陣列反演淺海地聲參數(shù)[A];2007年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2007年
9 費騰;;矢量水聽器校準(zhǔn)裝置[A];2005年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2005年
10 陳洪娟;趙鵬濤;;10~100Hz矢量水聽器校準(zhǔn)系統(tǒng)研究[A];2008年全國聲學(xué)學(xué)術(shù)會議論文集[C];2008年
相關(guān)重要報紙文章 前1條
1 唐曉偉 記者 姜雪松;冰城聲吶技術(shù)裝備造就“水下千里眼”[N];哈爾濱日報;2013年
相關(guān)博士學(xué)位論文 前10條
1 孫心毅;基于矢量水聽器的高指向性二階水聽器的研究[D];哈爾濱工程大學(xué);2014年
2 陳麗潔;微型矢量水聽器研究[D];哈爾濱工程大學(xué);2006年
3 莫世奇;矢量水聽器的數(shù)據(jù)融合研究[D];哈爾濱工程大學(xué);2007年
4 張國軍;纖毛式MEMS矢量水聽器研究[D];西北工業(yè)大學(xué);2015年
5 劉爽;新型矢量水聽器研究[D];哈爾濱工程大學(xué);2016年
6 李思純;基于矢量水聽器的目標(biāo)特征提取與識別技術(shù)研究[D];哈爾濱工程大學(xué);2008年
7 呂文磊;壓差式光纖矢量水聽器基元與測試技術(shù)研究[D];哈爾濱工程大學(xué);2009年
8 呂云飛;甚低頻矢量水聽器潛標(biāo)探測系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2010年
9 時勝國;矢量水聽器及其在平臺上的應(yīng)用研究[D];哈爾濱工程大學(xué);2007年
10 吳艷群;拖線陣用光纖矢量水聽器關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 武甜甜;三維壓電矢量水聽器小型化的研究[D];哈爾濱工程大學(xué);2009年
2 邢世文;三維矢量水聽器及其成陣研究[D];哈爾濱工程大學(xué);2009年
3 李金亮;三軸向電容式矢量水聽器的研究[D];哈爾濱工程大學(xué);2009年
4 袁林;矢量水聽器智能化技術(shù)研究[D];哈爾濱工程大學(xué);2008年
5 趙鵬濤;10-100Hz矢量水聽器研制及其測試方法研究[D];哈爾濱工程大學(xué);2008年
6 趙勰;三維矢量水聽器及其低頻校準(zhǔn)方法的研究[D];哈爾濱工程大學(xué);2009年
7 楊松濤;深水矢量水聽器的研制[D];哈爾濱工程大學(xué);2010年
8 邢建軍;矢量水聽器測向技術(shù)的研究[D];西北工業(yè)大學(xué);2005年
9 周益明;二維同振柱形矢量水聽器的研究[D];哈爾濱工程大學(xué);2006年
10 吳祥興;超低頻矢量水聽器技術(shù)研究[D];哈爾濱工程大學(xué);2005年
,本文編號:2178935
本文鏈接:http://www.wukwdryxk.cn/guanlilunwen/gongchengguanli/2178935.html