計入空化效應(yīng)的水潤滑徑向滑動軸承數(shù)值模擬研究
[Abstract]:The research on water lubrication theory and application can provide the theoretical basis and reference basis for the development of various friction pairs with water as the lubricating medium and various environment-friendly machinery. It can solve the problem of ecological environment pollution caused by oil leakage of machinery and equipment, purify and protect the environment on which human beings depend for survival, and serve for the construction of resource-saving and environment-friendly society for sustainable development. The tribological properties of water-lubricated bearings are greatly affected by bearing materials, structures and working conditions. There is no satisfactory method to select and design the material and structure of water lubricated bearing and make it have lower friction coefficient and higher bearing capacity under various working conditions. Compared with oil lubrication, water film thickness of water lubricated bearing is thinner, thermal elastohydrodynamic lubrication numerical calculation is not easy to converge, and water lubricated bearing is easy to enter turbulent state from laminar flow state and produce cavitation phenomenon. In addition, there are many guiding tanks for water lubricated bearings, and the establishment of hydrodynamic models is quite complex. Therefore, no important progress and breakthrough have been made in the study of the lubrication mechanism of water lubricating bearings. Considering the cavitation effect of water, the thermo-elastohydrodynamic lubrication analysis and the dynamic lubrication analysis of the water lubricated radial bearing are carried out in this paper, and the lubricating performance of the water lubricated radial bearing is analyzed. The main contents and conclusions of this paper are as follows: using Reynolds cavitation boundary condition, the basic equations of thermo-elastohydrodynamic lubrication are constructed, and the basic equations of thermo-elastohydrodynamic lubrication are solved by multi-grid algorithm. The influence of the mechanical properties of bearing materials on the lubricating properties of water lubricated bearings. The dimensionless pressure curve, dimensionless film thickness curve, maximum temperature rise and temperature distribution under different elastic modulus, different load and rotational speed are given. The results show that when the load, rotational speed, friction and wear properties are satisfied, the materials with small elastic modulus should be selected, the material with high elastic modulus should be selected when the load is large, the bearing material with high elastic modulus should be selected, and the bearing material with high elastic modulus should be selected. The emphasis of material modification is to increase its self-lubricating property and heat conduction coefficient. Based on FLUENT software package, the numerical simulation of water lubricated radial sliding bearing in turbulent lubrication state was carried out, and the turbulence model, wall function method and cavitation model for water lubricated radial sliding bearing were found out. The flow field and lubricating performance of water lubricated radial sliding bearings with straight guide flume were numerically simulated. The results show that the pressure field calculated by using three k 蔚 turbulence models, Schnerr and Sauer cavitation model or Zwart-Gerber-Belamri cavitation model is the best agreement with the experimental results when the water lubricated bearing is numerically simulated in turbulent state. In the state of full film lubrication, the bearing capacity of water lubricated bearing decreases and the friction coefficient increases after the water lubricating bearing opens the straight guide tank, and the more the guide tank, the greater the friction force and the smaller the bearing capacity. In addition to a vortex near the size of the guided-tank, there are other smaller swirls. There exists a main pressure peak and several small independent pressure peaks in the circumferential pressure curve of the journal on the axisymmetric plane. The cavitation of water-lubricated bearings mainly occurs on the surface of the journal.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH133.31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張霞;周勇;王新榮;李延斌;;水潤滑推力軸承承載力影響因素及提高方法研究[J];機(jī)械制造;2011年04期
2 王家序;劉靜;肖科;李金明;;水潤滑橡膠軸承不同結(jié)構(gòu)的摩擦噪聲分析[J];機(jī)械傳動;2011年09期
3 張和牧;朱漢華;;基于流固耦合的水潤滑軸承板條結(jié)構(gòu)優(yōu)化研究[J];船舶工程;2011年04期
4 楊俊;王雋;周旭輝;姚世衛(wèi);;水潤滑橡膠軸承結(jié)構(gòu)設(shè)計[J];艦船科學(xué)技術(shù);2011年08期
5 王家序;王少麗;肖科;田凡;;基于ANSYS的水潤滑橡膠合金軸承精密成型模具的優(yōu)化設(shè)計[J];潤滑與密封;2011年07期
6 王熙哲;王世琥;虞烈;丘大謀;;一種新的滑動軸承試驗裝置[J];實驗技術(shù)與管理;1992年02期
7 王磊;徐嘯;;水潤滑彈性金屬塑料滑動軸承在大型臥式軸流泵中的應(yīng)用[J];江蘇水利;2011年07期
8 魏鋒濤;宋俐;李言;;最小偏差法在機(jī)械多目標(biāo)優(yōu)化設(shè)計中的應(yīng)用[J];工程圖學(xué)學(xué)報;2011年03期
9 周金順;;可門電廠2A汽動給水泵振動故障的分析和處理[J];汽輪機(jī)技術(shù);2011年03期
10 ;[J];;年期
相關(guān)會議論文 前10條
1 唐群國;劉麗萍;金文浩;;新型水潤滑動靜壓徑向滑動軸承綜合性能試驗臺的研制[A];中國機(jī)械工程學(xué)會流體傳動與控制分會第六屆全國流體傳動與控制學(xué)術(shù)會議論文集[C];2010年
2 鄭昂;賈謙;王曉寧;袁小陽;;基于流固熱潤滑模型的水潤滑可傾瓦軸承頻變動力學(xué)性能分析[A];第9屆全國轉(zhuǎn)子動力學(xué)學(xué)術(shù)討論會ROTDYN'2010論文集[C];2010年
3 鐘海權(quán);;250噸級低速重載徑向滑動軸承研究[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對策(上冊)[C];2002年
4 王民富;姚傳賢;;水潤滑互穿網(wǎng)絡(luò)聚酰亞胺水輪機(jī)導(dǎo)軸承[A];水輪機(jī)抗磨蝕技術(shù)研討會論文集[C];2006年
5 王曉寧;鄭昂;紀(jì)峰;袁小陽;;彈性支點(diǎn)水潤滑可傾瓦軸承的靜動特性分析方法[A];第9屆全國轉(zhuǎn)子動力學(xué)學(xué)術(shù)討論會ROTDYN'2010論文集[C];2010年
6 彭婭玲;張志國;陳汝鋼;方成躍;;船舶艉部水潤滑軸承潤滑特性的數(shù)值分析研究[A];2007年船舶力學(xué)學(xué)術(shù)會議暨《船舶力學(xué)》創(chuàng)刊十周年紀(jì)念學(xué)術(shù)會議論文集[C];2007年
7 朱勤;王世虎;謝友柏;虞烈;;MW301渦輪膨脹機(jī)橢圓軸承的試驗研究[A];第二屆全國青年摩擦學(xué)學(xué)術(shù)會議論文專輯[C];1993年
8 劉碩;朱新河;徐久軍;;基于虛擬儀器的尼龍軸承摩擦磨損實驗機(jī)設(shè)計[A];2006全國摩擦學(xué)學(xué)術(shù)會議論文集(二)[C];2006年
9 高雯;唐睿;龍沖生;張俊彥;王紀(jì)平;;轉(zhuǎn)速和載荷對C/C-SiC復(fù)合材料的水潤滑摩擦磨損性能的影響[A];中國核科學(xué)技術(shù)進(jìn)展報告——中國核學(xué)會2009年學(xué)術(shù)年會論文集(第一卷·第4冊)[C];2009年
10 徐海波;朱均;;徑向滑動軸承中流體從層流到紊流的流動分析和轉(zhuǎn)變判據(jù)研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(下冊)[C];1992年
相關(guān)重要報紙文章 前3條
1 ;BTG水潤滑動密封復(fù)合橡膠軸承[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2000年
2 王波 程遠(yuǎn)樺 楚斌;打造長江上游高新技術(shù)產(chǎn)業(yè)基地[N];科技日報;2003年
3 王文通、張靜;武邑鎮(zhèn)項目建設(shè)實現(xiàn)良性循環(huán)[N];衡水日報;2011年
相關(guān)博士學(xué)位論文 前10條
1 段海濤;水潤滑軸承數(shù)值仿真及其材料摩擦學(xué)性能研究[D];機(jī)械科學(xué)研究總院;2011年
2 秦紅玲;水潤滑復(fù)合橡膠尾軸承摩擦學(xué)問題研究[D];武漢理工大學(xué);2012年
3 彭晉民;水潤滑塑料合金軸承潤滑機(jī)理及設(shè)計研究[D];重慶大學(xué);2003年
4 陳戰(zhàn);水潤滑軸承的摩擦磨損性能及潤滑機(jī)理的研究[D];重慶大學(xué);2003年
5 余江波;基于資源節(jié)約與環(huán)境友好的高性能水潤滑軸承關(guān)鍵技術(shù)研究[D];重慶大學(xué);2006年
6 陳淑江;螺旋油楔滑動軸承潤滑機(jī)理的理論與實驗研究[D];山東大學(xué);2007年
7 李洪來;高速硬盤微小型滑動軸承—主軸系統(tǒng)變溫條件下的穩(wěn)定性研究[D];河北工業(yè)大學(xué);2009年
8 龔中良;微型植入式血泵血液自潤滑機(jī)理研究[D];中南大學(xué);2006年
9 童寶宏;關(guān)于內(nèi)燃機(jī)潤滑系統(tǒng)網(wǎng)絡(luò)法設(shè)計理論和方法的研究[D];合肥工業(yè)大學(xué);2007年
10 孫軍;曲軸—軸承系統(tǒng)摩擦學(xué)、剛度和強(qiáng)度的耦合研究[D];合肥工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉麗萍;水潤滑徑向滑動軸承試驗臺的研制[D];華中科技大學(xué);2011年
2 熊永強(qiáng);計入空化效應(yīng)的水潤滑徑向滑動軸承數(shù)值模擬研究[D];上海交通大學(xué);2011年
3 馬平;水潤滑軸承材料的耐蝕性研究[D];吉林大學(xué);2011年
4 雷渠江;水潤滑軸承柔性制造平臺的物料輸送裝備設(shè)計與研究[D];重慶大學(xué);2012年
5 禹洪亮;船用泵水潤滑軸承潤滑性能試驗研究[D];上海交通大學(xué);2012年
6 劉宇;高分子材料水潤滑尾軸承數(shù)值計算及試驗研究[D];武漢理工大學(xué);2010年
7 戴明城;水潤滑尾軸承流固耦合仿真及結(jié)構(gòu)優(yōu)化研究[D];武漢理工大學(xué);2010年
8 余四平;高速離心泵徑向滑動軸承承載能力分析[D];南京林業(yè)大學(xué);2012年
9 于楊冰;基于數(shù)據(jù)庫的徑向滑動軸承—轉(zhuǎn)子系統(tǒng)非線性動力學(xué)行為研究[D];西安理工大學(xué);2010年
10 王浩;新型水潤滑橡膠尾軸承試驗研究[D];武漢理工大學(xué);2012年
,本文編號:2168987
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/jixiegongcheng/2168987.html