ֵĘOֲP(gun)(wn)}о
l(f)r(sh)g2021-03-19 22:25
ֵĘOֲ(wn)}ɿһ(li)Oֵ(wn)}.(li),(li)(wn)}õˁ(li)Ԕ(sh)W(xu)ڡ(jng)(j)W(xu)ȲͬI(lng)?q)WߵP(gun)ע,Vؑ(yng)ڽЈ(chng)L(fng)U(xin)u(png),A(y)y(c),|(zh)(zi)u(png),rA(y)(bo),U(xin)ИI(y).,(du)ژOֵ(wn)}оHҪČW(xu)g(sh)r(ji)ֵҾЏ(qing)ҵĬF(xin)(sh)x.Ԕ(sh)W(xu)ՓՓԼSC(j)A(ch),@SC(j)׃ʜy(c)ȵСֵĘOֲչ_(ki)ӑՓ,Ҫ:һ¸˘Oֵ(wn)}оx(gu)(ni)оF(xin),(jin)ҪB˱W(xu)λՓĵо?j)?ni)ݼ(chung)c(din).ڶ·քe]˪(d)ֲͬSC(j)кƽ(wn)еĘOС-Oģ,÷ֲ(sh)Taylorչ_(ki)ׂ(g)Ҫĸʹʽ,҂õ@ɷNеĘOֲ,ҷ˘OֲՔ.Ô(sh)ֵ(yn)CՓ.¿]\(yn)ݔ(wn)}еă(li)·,C@(li)·ֵĘOֲ.ڼO(sh)ÿl·һlޠB(ti)xɢr(sh)gRβɼsıvMarkov朵ǰ,Y(ji)ȫʹʽĘOԼMarkov朵ķֽⲻHõ˵һ(li)·ֵĘOֲֵ,߀˵ڶ(li)·͵ĘOֲc...
(li)ԴϺͨW(xu)Ϻ 211ԺУ 985ԺУ ֱԺУ
(y)(sh)101 (y)
W(xu)λ(j)eʿ
Ŀ䛡
ժҪ
ABSTRACT
һ wՓ
1.1 оF(xin)
1.1.1 OֵՓ
1.1.2 ׃c(din)O(jin)y(c)
1.1.3 Ǿ
1.2 о(wn)}ĵҪ
1.2.1 SC(j)׃·͵ĘOֵ(wn)}
1.2.2 ֲֵA(ch)֮ϵ׃c(din)O(jin)y(c)(wn)}
1.2.3 ʜy(c)ȵĘOֵ(wn)}
1.3 Ҫ?jing)?chung)c(din)
ڶ OС-Oģ͵ĘOֲ
2.1 (d)ֲͬ׃ĘOС-Oģ͵ĘOֲՔ
2.1.1 (d)ֲͬИOС-Oģ͵ĘOֲ
2.1.2 (d)ֲͬИOС-Oģ͘OֲֵՔ
2.2 (yn)ƽ(wn)^(gu)̘OС-Oģ͵ĘOֲՔ
2.2.1 (yn)ƽ(wn)^(gu)̘OС-Oģ͵ĘOֲ
2.2.2 (yn)ƽ(wn)^(gu)̘OС-Oģ͘OֲֵՔ
2.3 (sh)ֵ
2.4 СY(ji)
(li)Markov·͵ĘOֲ
3.1 (li)·Ķx
3.2 ·Ԫغ͵ֵĘOֲ
3.2.1 G1(li)·ֵĘOֲ
3.2.2 G2(li)·ֵĘOֲ
3.3 (sh)ֵ
3.4 СY(ji)
ȻȺ͵ıO(jin)y(c)y(tng)Ӌ(j)(yu)ԼARLĹӋ(j)
*
SLR(yu)"> 4.1 ƈDT*
SLR(yu)
4.2 ARLĹӋ(j)
4.3 (sh)ֵ
4.4 СY(ji)
Ǿľطط
5.1 ؆(wn)}Ĵ
5.2 ؆(wn)}ط
5.3 (sh)ֵ
5.4 СY(ji)
Y(ji)Փcչ
īI(xin)
x
ڌW(xu)gоɹl(f)Փ
īI(xin)
ڿՓ
[1]Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations[J]. PENG ShiGe Institute of Mathematics,Shandong University,Jinan 250100,China. Science in ChinaSeries A:Mathematics. 2009(07)
[2]NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS[J]. PENG Shige School of Mathematics and System Science, Shandong University, Jinan 250100, China.. Chinese Annals of Mathematics. 2005(02)
ľ̖(ho)3090332
(li)ԴϺͨW(xu)Ϻ 211ԺУ 985ԺУ ֱԺУ
(y)(sh)101 (y)
W(xu)λ(j)eʿ
Ŀ䛡
ժҪ
ABSTRACT
һ wՓ
1.1 оF(xin)
1.1.1 OֵՓ
1.1.2 ׃c(din)O(jin)y(c)
1.1.3 Ǿ
1.2 о(wn)}ĵҪ
1.2.1 SC(j)׃·͵ĘOֵ(wn)}
1.2.2 ֲֵA(ch)֮ϵ׃c(din)O(jin)y(c)(wn)}
1.2.3 ʜy(c)ȵĘOֵ(wn)}
1.3 Ҫ?jing)?chung)c(din)
ڶ OС-Oģ͵ĘOֲ
2.1 (d)ֲͬ׃ĘOС-Oģ͵ĘOֲՔ
2.1.1 (d)ֲͬИOС-Oģ͵ĘOֲ
2.1.2 (d)ֲͬИOС-Oģ͘OֲֵՔ
2.2 (yn)ƽ(wn)^(gu)̘OС-Oģ͵ĘOֲՔ
2.2.1 (yn)ƽ(wn)^(gu)̘OС-Oģ͵ĘOֲ
2.2.2 (yn)ƽ(wn)^(gu)̘OС-Oģ͘OֲֵՔ
2.3 (sh)ֵ
2.4 СY(ji)
(li)Markov·͵ĘOֲ
3.1 (li)·Ķx
3.2 ·Ԫغ͵ֵĘOֲ
3.2.1 G1(li)·ֵĘOֲ
3.2.2 G2(li)·ֵĘOֲ
3.3 (sh)ֵ
3.4 СY(ji)
ȻȺ͵ıO(jin)y(c)y(tng)Ӌ(j)(yu)ԼARLĹӋ(j)
*
SLR(yu)"> 4.1 ƈDT*
SLR(yu)
4.2 ARLĹӋ(j)
4.3 (sh)ֵ
4.4 СY(ji)
Ǿľطط
5.1 ؆(wn)}Ĵ
5.2 ؆(wn)}ط
5.3 (sh)ֵ
5.4 СY(ji)
Y(ji)Փcչ
īI(xin)
x
ڌW(xu)gоɹl(f)Փ
īI(xin)
ڿՓ
[1]Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations[J]. PENG ShiGe Institute of Mathematics,Shandong University,Jinan 250100,China. Science in ChinaSeries A:Mathematics. 2009(07)
[2]NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS[J]. PENG Shige School of Mathematics and System Science, Shandong University, Jinan 250100, China.. Chinese Annals of Mathematics. 2005(02)
ľ̖(ho)3090332
朽ӣhttp://www.wukwdryxk.cn/shoufeilunwen/sklbs/3090332.html