混沌系統(tǒng)的魯棒性研究及在圖像加密中的應(yīng)用
[Abstract]:The vigorous rise of science and technology and information technology has brought the opportunity of the rapid development of information technology to the whole world. While enjoying the enormous benefits brought by the information network, people are also faced with the enormous challenge of information security. As an important carrier and transmission medium of information, the security of image has been paid more and more attention. The core tool of information security is encryption. With the increasing complexity of communication environment and the improvement of decoding ability, some traditional cryptographic algorithms are compromised or their security is threatened, which requires more advanced cryptographic design theory and innovative technology. The discovery of chaos is the third revolution in physics in the 20 th century. Some characteristics of chaotic dynamics coincide with the requirements of cryptography. Chaotic cryptography has become one of the hot topics in cryptography. In 1975, Li-Yorke first defined the term of chaos in mathematical language, and put forward a famous theorem of chaos in three cycles. Zhou Hailing and Song Enbin put forward and proved a chaotic robust theorem about quadratic polynomials by using Li-Yorke theorem. Yang Xiuping and others proposed and proved a chaotic robustness theorem for cubic polynomials. In 1999, Banerjee et al proposed a chaotic robust theorem for standard forms of two-dimensional piecewise smooth mappings. In 2001, Andrecut et al proposed a chaotic robust theorem for S unimodal mappings. Min Lequan and Chen Guanrong proposed an image encryption scheme SESAE based on d bit key stream which has the effect of key avalanche and increases the difficulty of deciphers. Based on the previous work, the robustness, pseudo random number generator and avalanche image encryption scheme of discrete chaotic systems are studied in this paper. The main achievements and innovations of this paper are as follows: (1) the robustness of some discrete chaotic systems is studied in this paper based on Li-Yorke chaos discrimination theorem and chaotic discriminant theorem of S unimodal mapping. A robust chaos theorem for constructing one-dimensional piecewise nonlinear mappings and a robust chaos theorem for cubic polynomial mappings are presented. By improving the chaos robust theorem of the standard form of two-dimensional piecewise smooth mapping, this paper presents the equivalent chaos discrimination theorem for the standard form of two-dimensional piecewise smooth mapping, and gives the necessary conditions for constructing four-dimensional discrete chaotic mapping. This paper provides a theoretical proof for constructing chaotic system and a new tool for chaotic application. (2) the design and performance detection of pseudorandom number generator is based on the new robust chaos theorem of discrete system. Six new discrete chaotic generalized synchronization systems are constructed by trigonometric functions and chaotic generalized synchronization theorems. Using these six discrete chaotic generalized synchronization systems, this paper optimizes the design of six chaotic pseudorandom number generators (CPRNGs).) with large key space. The pseudorandom performance of CPRNGs and RC4 algorithm is tested by using the improved FIPS 140-2 and SP800-22 detection standards published by (NIST) of the National Institute of Standards and Technology. The results show that the random performance of CPRNGs is comparable to that of RC4 algorithm and ZUC algorithm. The 14-15 items detected by SP800-22 of two CPRNGs are superior to those of RC4 and ZUC. (3) A stream encryption scheme with key avalanche and clear text avalanche and a block encryption avalanche scheme are proposed in this paper. The research work of image encryption scheme SESAE with avalanche effect is generalized.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP309.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳娟;陸君安;;非恒同混沌系統(tǒng)的全狀態(tài)廣義同步[J];控制理論與應(yīng)用;2009年09期
2 朱洪波,肖井華,李向明;耦合映射的混沌廣義同步[J];北京郵電大學(xué)學(xué)報(bào);1999年03期
3 李響;張榮;徐振源;;一類(lèi)參數(shù)不確定混沌系統(tǒng)特殊的線性廣義同步[J];計(jì)算機(jī)仿真;2010年04期
4 張峰;王燕飛;鄭翔玉;張開(kāi)閂;;自適應(yīng)線性廣義同步方法[J];計(jì)算機(jī)與現(xiàn)代化;2014年03期
5 徐訓(xùn)霞;丁建旭;過(guò)榴曉;;給定流形自適應(yīng)廣義同步及在保密通信中的應(yīng)用[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
6 江正仙;丁建旭;過(guò)榴曉;徐振源;;帶脈沖控制的給定流形的混沌廣義同步[J];計(jì)算機(jī)仿真;2012年05期
7 張永東,劉永清,劉樹(shù)堂;研究混沌系統(tǒng)廣義同步問(wèn)題的一種解析方法[J];系統(tǒng)工程與電子技術(shù);2000年11期
8 胡愛(ài)花;徐振源;李芳;;基于自適應(yīng)控制的混沌系統(tǒng)的線性廣義同步化[J];系統(tǒng)仿真學(xué)報(bào);2006年04期
9 許碧榮;;基于非自治混沌系統(tǒng)廣義同步的數(shù)字保密通信方案(英文)[J];量子電子學(xué)報(bào);2011年06期
10 張小紅;周勇飛;;異構(gòu)超混沌廣義同步系統(tǒng)構(gòu)造及其電路仿真[J];計(jì)算機(jī)工程與科學(xué);2014年03期
相關(guān)會(huì)議論文 前7條
1 閔樂(lè)泉;;連續(xù)系統(tǒng)和離散系統(tǒng)中廣義同步研究[A];2009年第五屆全國(guó)網(wǎng)絡(luò)科學(xué)論壇論文集[C];2009年
2 劉曾榮;陳駿;羅吉貴;;用投影映射實(shí)現(xiàn)廣義同步[A];第七屆全國(guó)非線性動(dòng)力學(xué)學(xué)術(shù)會(huì)議和第九屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議論文集[C];2004年
3 李棟;鄭志剛;;延時(shí)動(dòng)力學(xué)系統(tǒng)廣義同步的研究[A];全國(guó)復(fù)雜系統(tǒng)研究論壇論文集(二)[C];2005年
4 段玉波;王興柱;周鸞杰;王瑞云;邵克勇;張軼淑;;基于非線性狀態(tài)觀測(cè)器的混沌廣義同步控制[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
5 秦衛(wèi)陽(yáng);王紅瑾;任興民;;非線性恢復(fù)力耦合的振動(dòng)系統(tǒng)同步與參數(shù)識(shí)別[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
6 方錦清;;非線性網(wǎng)絡(luò)的動(dòng)力學(xué)復(fù)雜性研究進(jìn)展[A];全國(guó)復(fù)雜系統(tǒng)研究論壇論文集(一)[C];2005年
7 秦衛(wèi)陽(yáng);王紅瑾;任興民;;非線性恢復(fù)力耦合的振動(dòng)系統(tǒng)同步與參數(shù)識(shí)別[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
相關(guān)博士學(xué)位論文 前7條
1 韓丹丹;混沌系統(tǒng)的魯棒性研究及在圖像加密中的應(yīng)用[D];北京科技大學(xué);2016年
2 過(guò)榴曉;混沌系統(tǒng)的廣義同步及動(dòng)態(tài)網(wǎng)絡(luò)同步研究[D];江南大學(xué);2009年
3 胡愛(ài)花;混沌同步的有關(guān)問(wèn)題研究[D];江南大學(xué);2010年
4 徐旭林;社會(huì)群體行為建模及其動(dòng)力學(xué)分析[D];南開(kāi)大學(xué);2010年
5 張剛;混沌系統(tǒng)及復(fù)雜網(wǎng)絡(luò)的同步研究[D];上海大學(xué);2007年
6 張榮;復(fù)雜動(dòng)力學(xué)網(wǎng)絡(luò)與混沌系統(tǒng)的控制與同步[D];江南大學(xué);2008年
7 張永平;分形的控制與應(yīng)用[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 李小娟;連續(xù)系統(tǒng)的廣義同步[D];江南大學(xué);2010年
2 丁建旭;混沌廣義同步與控制[D];江南大學(xué);2012年
3 朱澤飛;一般異維混沌系統(tǒng)以及復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步[D];武漢科技大學(xué);2015年
4 王兵;一類(lèi)混沌系統(tǒng)的混沌廣義同步探討[D];江南大學(xué);2009年
5 王雅琴;典型混沌系統(tǒng)廣義同步與相同步方案的研究[D];大連理工大學(xué);2009年
6 劉華艷;耦合混沌系統(tǒng)廣義同步研究[D];鄭州大學(xué);2010年
7 陳娟;廣義同步的復(fù)雜性研究[D];江南大學(xué);2011年
8 謝青春;復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)廣義同步[D];江南大學(xué);2010年
9 商艷敏;二階延遲混沌系統(tǒng)廣義同步的電路實(shí)驗(yàn)研究[D];東北師范大學(xué);2011年
10 高亞飛;光滑混沌耦合動(dòng)力系統(tǒng)同步類(lèi)型機(jī)理及其廣義同步[D];鄭州大學(xué);2011年
,本文編號(hào):2140697
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2140697.html