a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

幾類分?jǐn)?shù)階系統(tǒng)的穩(wěn)定性分析與鎮(zhèn)定控制器設(shè)計(jì)

發(fā)布時(shí)間:2018-08-14 19:28
【摘要】:分?jǐn)?shù)階微積分是整數(shù)階微積分的延伸與拓展,其發(fā)展幾乎與整數(shù)階微積分的發(fā)展同步。分?jǐn)?shù)階微積分在越來越多的領(lǐng)域中都發(fā)揮著極其重要的作用。與整數(shù)階模型相比,分?jǐn)?shù)階模型能夠更加準(zhǔn)確地描述自然現(xiàn)象,更好地模擬自然界的物理現(xiàn)象和動(dòng)態(tài)過程。隨著分?jǐn)?shù)階微積分理論在不同的科學(xué)領(lǐng)域里出現(xiàn),對(duì)其理論或應(yīng)用價(jià)值的研究都顯得尤為迫切。因此,對(duì)分?jǐn)?shù)階微分方程和系統(tǒng)進(jìn)行深入研究具有廣泛的理論意義與實(shí)際應(yīng)用價(jià)值。有關(guān)分?jǐn)?shù)階微分方程和系統(tǒng)的研究引起了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注并逐漸成為一個(gè)熱點(diǎn)問題。本文針對(duì)幾類分?jǐn)?shù)階系統(tǒng)的穩(wěn)定性分析、鎮(zhèn)定控制器設(shè)計(jì)問題和兩類分?jǐn)?shù)階微分方程邊值問題解的存在性進(jìn)行了研究,給出了幾類分?jǐn)?shù)階系統(tǒng)一些新的穩(wěn)定性判據(jù)、鎮(zhèn)定控制器的設(shè)計(jì)方法和分?jǐn)?shù)階微分方程邊值問題解存在的若干充分條件,并分別用仿真例子驗(yàn)證了所得到結(jié)果的有效性。主要研究?jī)?nèi)容如下:1.基于Caputo分?jǐn)?shù)階導(dǎo)數(shù)已有的基本性質(zhì),給出了Caputo分?jǐn)?shù)階導(dǎo)數(shù)的一些新性質(zhì)。這些新性質(zhì)可以幫助尋找一個(gè)給定的分?jǐn)?shù)階系統(tǒng)的二次Lyapunov函數(shù)。2.研究了幾類分?jǐn)?shù)階系統(tǒng)的穩(wěn)定性和鎮(zhèn)定性。首先,利用分?jǐn)?shù)階Lyapunov函數(shù)方法,研究了分?jǐn)?shù)階線性系統(tǒng)的穩(wěn)定性,并給出了分?jǐn)?shù)階線性受控系統(tǒng)的狀態(tài)反饋控制器設(shè)計(jì)。其次,利用分?jǐn)?shù)階Razumikhin定理,研究了分?jǐn)?shù)階線性時(shí)滯系統(tǒng)的穩(wěn)定性,并給出了分?jǐn)?shù)階線性時(shí)滯受控系統(tǒng)的狀態(tài)反饋控制器設(shè)計(jì)。最后,利用分?jǐn)?shù)階Lyapunov函數(shù)方法,研究了分?jǐn)?shù)階非線性系統(tǒng)的穩(wěn)定性,并利用Backstepping設(shè)計(jì)方法,給出了一類分?jǐn)?shù)階非線性三角系統(tǒng)的狀態(tài)反饋控制器設(shè)計(jì)。3.研究了分?jǐn)?shù)階非線性三角系統(tǒng)的反饋鎮(zhèn)定控制器設(shè)計(jì)問題。通過引入適當(dāng)?shù)臓顟B(tài)變換,將分?jǐn)?shù)階非線性三角系統(tǒng)的反饋鎮(zhèn)定控制器設(shè)計(jì)問題轉(zhuǎn)化為待定參數(shù)的選取問題。利用靜態(tài)增益控制設(shè)計(jì)方法和分?jǐn)?shù)階Lyapunov函數(shù)方法,分別給出了分?jǐn)?shù)階非線性下、上三角系統(tǒng)的狀態(tài)反饋和輸出反饋控制器設(shè)計(jì)。4.研究了分?jǐn)?shù)階非線性時(shí)滯三角系統(tǒng)的反饋鎮(zhèn)定控制器設(shè)計(jì)問題。通過引入適當(dāng)?shù)臓顟B(tài)變換,將分?jǐn)?shù)階非線性時(shí)滯三角系統(tǒng)的反饋鎮(zhèn)定控制器設(shè)計(jì)問題轉(zhuǎn)化為待定參數(shù)的選取問題。利用靜態(tài)增益控制設(shè)計(jì)方法和分?jǐn)?shù)階Razumikhin定理,分別設(shè)計(jì)了分?jǐn)?shù)階非線性時(shí)滯下、上三角系統(tǒng)的狀態(tài)反饋和輸出反饋控制器。5.研究了兩類分?jǐn)?shù)階微分方程邊值問題解的存在性。利用上下解方法、Shauder不動(dòng)點(diǎn)定理和Leggett-Williams不動(dòng)點(diǎn)定理,建立了一類分?jǐn)?shù)階微分方程邊值問題至少存在一個(gè)或三個(gè)正解的幾個(gè)充分條件。利用Banach代數(shù)上的Dhage不動(dòng)點(diǎn)定理,給出了一類混合分?jǐn)?shù)階微分方程邊值問題存在一個(gè)解的充分條件。
[Abstract]:Fractional calculus is an extension and extension of integral order calculus, and its development almost keeps pace with the development of integer order calculus. Fractional calculus plays an important role in more and more fields. Compared with the integer order model, the fractional order model can describe the natural phenomena more accurately and simulate the physical phenomena and dynamic processes better. With the emergence of fractional calculus theory in different fields of science, it is urgent to study its theory or application value. Therefore, the study of fractional differential equations and systems has a wide range of theoretical significance and practical application value. The study of fractional differential equations and systems has attracted the attention of scholars at home and abroad and has gradually become a hot issue. In this paper, the existence of solutions to the stability analysis, stabilization controller design problem and boundary value problem of two kinds of fractional differential equations are studied, and some new stability criteria are given. The design method of stabilizing controller and some sufficient conditions for the existence of solutions to the boundary value problem of fractional differential equations are discussed. Simulation examples are given to verify the validity of the obtained results. The main research contents are as follows: 1. Based on the basic properties of Caputo fractional derivative, some new properties of Caputo fractional derivative are given. These new properties can help to find the quadratic Lyapunov function of a given fractional system. The stability and stability of several fractional order systems are studied. Firstly, the stability of fractional linear systems is studied by using the fractional Lyapunov function method, and the state feedback controller design for fractional linear controlled systems is given. Secondly, the stability of fractional linear time-delay systems is studied by using fractional Razumikhin theorem, and the state feedback controller design for fractional linear time-delay controlled systems is given. Finally, the stability of fractional nonlinear systems is studied by using the fractional Lyapunov function method, and the state feedback controller design of a class of fractional nonlinear triangular systems is given by using the Backstepping design method. The design of feedback stabilization controllers for fractional nonlinear triangular systems is studied. By introducing appropriate state transformation, the design problem of feedback stabilization controller for fractional nonlinear triangular systems is transformed into the selection of undetermined parameters. Using the static gain control design method and the fractional Lyapunov function method, the state feedback and output feedback controller design of the upper triangular system under fractional order nonlinearity are given respectively. 4. In this paper, the design of feedback stabilization controller for fractional nonlinear delay-triangular systems is studied. By introducing appropriate state transformation, the problem of feedback stabilization controller design for fractional nonlinear delay-triangular systems is transformed into the selection of undetermined parameters. Using the static gain control design method and fractional order Razumikhin theorem, the state feedback and output feedback controllers for upper triangular systems with fractional nonlinear delay are designed respectively. The existence of solutions for two kinds of boundary value problems for fractional differential equations is studied. By using the upper and lower solution method and the Leggett-Williams fixed point theorem, some sufficient conditions for the existence of at least one or three positive solutions for a class of fractional differential equation boundary value problems are established. By using the Dhage fixed point theorem on Banach algebra, a sufficient condition for the existence of a solution to the boundary value problem for a class of mixed fractional differential equations is given.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP13

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙春娜;薛定宇;;一種分?jǐn)?shù)階線性系統(tǒng)求解方法[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

2 趙春娜;張祥德;孫艷蕊;;成比例分?jǐn)?shù)階系統(tǒng)的仿真研究[J];系統(tǒng)仿真學(xué)報(bào);2008年15期

3 周亞非;王中華;;分?jǐn)?shù)階混沌激光器系統(tǒng)的同步[J];半導(dǎo)體光電;2008年05期

4 朱呈祥;鄒云;;分?jǐn)?shù)階控制研究綜述[J];控制與決策;2009年02期

5 左建政;王光義;;一種新的分?jǐn)?shù)階混沌系統(tǒng)研究[J];現(xiàn)代電子技術(shù);2009年10期

6 汪紀(jì)鋒;肖河;;分?jǐn)?shù)階全維狀態(tài)觀測(cè)器設(shè)計(jì)[J];重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期

7 孫克輝;楊靜利;丘水生;;分?jǐn)?shù)階混沌系統(tǒng)的仿真方法研究[J];系統(tǒng)仿真學(xué)報(bào);2011年11期

8 李安平;劉國(guó)榮;沈細(xì)群;;不同階分?jǐn)?shù)階混沌系統(tǒng)的同步與參數(shù)辨識(shí)[J];計(jì)算機(jī)工程與應(yīng)用;2013年04期

9 嚴(yán)t,

本文編號(hào):2183896


資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2183896.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d992d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲综合激情网| 国产精品白丝喷浆| 久久伊人网| AV大片在线无码永久免费| 软萌小仙自慰粉嫩小泬网站| 日本在线av| 局长含了一整晚我的奶头| 国产特级毛片AAAAAA毛片| 亚洲最新无码中文字幕久久| 埋进双腿间舌头h欢欲| www.7788久久久久久久久| 国产爆乳成aV人在线播放| 97人人添人澡人人爽超碰 | WW欧日韩视频高清在线| 欧美hairy多毛pics大全| 亚洲一级内射| 欧洲黑白配一二三四区| 国产成人无码AA精品一区| 久久无码av三级| 一本色综合网久久| 精品综合久久久久久8888| 亚洲熟女少妇| 极品尤物一区二区三区| 无码精品人妻一区二区三区影院| 伊人色综合网一区二区三区| 日韩精品久久久久久免费| 惠安县| 色91精品久久久久久久久| 亚洲爱| 中文字幕久久久久| 无碼国产精品一区| 国产精品视频一区国模私拍| 国产亚洲精品美女久久久久| 浠水县| 人妻999| 久久久婷| 日本一级做a爱片| 亚洲中文字幕永久无线码| 精品国产午夜理论片不卡| 国产乱人伦偷精品视频不卡| 国精品午夜福利视频不卡757|