a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 腫瘤論文 >

磷酸烯醇式丙酮酸羧激酶在腫瘤再生細(xì)胞代謝過程中作用的研究

發(fā)布時間:2018-08-25 07:38
【摘要】:第一部分上調(diào)表達(dá)PCK1對黑色素瘤再生細(xì)胞糖酵解側(cè)枝反應(yīng)的促進(jìn)作用研究目的:腫瘤干細(xì)胞在腫瘤的發(fā)生、發(fā)展和治療后復(fù)發(fā)過程中發(fā)揮重要作用。關(guān)于腫瘤細(xì)胞代謝的研究主要集中在混合細(xì)胞群體的層面,缺乏特異性針對腫瘤干細(xì)胞代謝特征及其分子調(diào)控機(jī)制的研究。本研究采用三維軟纖維蛋白基質(zhì)膠(3D fibrin)分離篩選的腫瘤干細(xì)胞(定義為腫瘤再生細(xì)胞,TRCs)為模型,探究糖異生的關(guān)鍵酶之一的胞漿型磷酸烯醇式丙酮酸羧激酶(PCK1)在黑色素瘤再生細(xì)胞中的表達(dá)及其發(fā)揮的代謝功能。方法:(1)以3D fibrin分離小鼠黑色素瘤B16細(xì)胞、肝癌H22細(xì)胞、淋巴瘤EL4細(xì)胞中的TRCs,然后使用RT-PCR、Real time PCR和Western blot檢測這些TRCs和相應(yīng)對照細(xì)胞以及小鼠未分化的間充質(zhì)干細(xì)胞(mMSCs)和胚胎干細(xì)胞(mESCs)中PCK1的表達(dá)。(2)使用癌癥基因數(shù)據(jù)庫cbioportal中的基因表達(dá)數(shù)據(jù)分析PCK1與CD133、ALDH1A1和ABCG5等常用腫瘤干細(xì)胞標(biāo)志在多細(xì)胞中的共表達(dá)關(guān)系;并采用Real time PCR檢測PCK1在CD133+與CD133-B16細(xì)胞亞群中的表達(dá)差異。(3)免疫組化檢測PCK1在9例人黑色素瘤臨床標(biāo)本中的表達(dá);分離人原代黑色素瘤新鮮標(biāo)本中的TRCs, real time PCR檢測PCK 1的表達(dá)情況。(4) RT-PCR和Western blot檢測B16TRCs中糖異生的另外兩個關(guān)鍵酶FBP1和G6Pase的表達(dá)情況,以探討PCK1是否介導(dǎo)糖異生的反應(yīng)。(5)以siRNA沉默PCK1的表達(dá)后,觀察B16 TRCs體外生長、葡萄糖消耗、乳酸釋放以及中間代謝產(chǎn)物(如絲氨酸/甘氨酸,三磷酸甘油)等的變化,以探究PCK1發(fā)揮的代謝功能。(6)以siRNA沉默B16或H22 TRCs中PCK1的表達(dá),觀察其在動物體內(nèi)成瘤能力。(7)以siRNA沉默B16 TRCs中PCK1的表達(dá)后,補(bǔ)充相關(guān)中間代謝產(chǎn)物,以觀察對克隆生長的影響。(8)觀察PCK1過表達(dá)對B16 TRCs體外生長的影響。(9)構(gòu)建PCK1啟動子控制的EGFP熒光表達(dá)B16細(xì)胞,分離出該細(xì)胞中的TRCs并置于普通硬質(zhì)環(huán)境下連續(xù)培養(yǎng),采用熒光顯微鏡動態(tài)觀察熒光變化;將B16 TRCs置于普通硬質(zhì)環(huán)境下連續(xù)培養(yǎng),以RT-PCR、Real time PCR和Western blot檢測PCK1的表達(dá)變化。(10)以小分子抑制劑或封閉抗體阻斷B16 TRCs中相關(guān)信號通路位點后以Real time PCR檢測PCK1的表達(dá),初步探究PCK 1的表達(dá)調(diào)控機(jī)制。(11)亞硫酸氫鹽測序法檢測B16 TRCs中PCK1啟動子區(qū)的甲基化水平,探討DNA甲基化對PCK1表達(dá)調(diào)控的影響。結(jié)果:(1)B16細(xì)胞、H22細(xì)胞、EL4細(xì)胞TRCs相對于分化的腫瘤細(xì)胞上調(diào)表達(dá)PCK1,未分化的小鼠間充質(zhì)干細(xì)胞和胚胎干細(xì)胞高表達(dá)PCK1。(2)PCK1與常用腫瘤干細(xì)胞標(biāo)志CD133、ALDH1A1和ABCG5在多細(xì)胞中的表達(dá)呈正相關(guān);PCK1在CD133+B16亞群細(xì)胞中的表達(dá)高于CD133-亞群細(xì)胞。(3)約1/3的黑色素瘤臨床標(biāo)本中檢測到PCK1的高表達(dá),分離自人原代黑色素瘤的TRCs上調(diào)表達(dá)PCK1。(4)B16 TRCs不表達(dá)糖異生的另外兩個關(guān)鍵酶FBP1和G6Pase。(5) siRNA沉默PCK1表達(dá)后,B16 TRCs體外生長明顯受抑,葡萄糖消耗和乳酸釋放減少,甘氨酸和三磷酸甘油水平下降。(6) siRNA沉默PCK1表達(dá)后,B16和H22 TRCs的小鼠體內(nèi)成瘤能力均減弱。(7)補(bǔ)充甘氨酸和(或)三磷酸甘油可部分逆轉(zhuǎn)PCK1沉默后B16 TRCs受抑制的生長。(8)PCK1過表達(dá)可促進(jìn)B16 TRCs的體外生長。(9)硬基質(zhì)環(huán)境培養(yǎng)可誘導(dǎo)B16 TRCs中PCK1的下調(diào)表達(dá)。(10)抑制整合素αVβ3或P13K信號可誘導(dǎo)B16 TRCs中PCK1的表達(dá)下調(diào),H3K9去甲基化可導(dǎo)致PCK1表達(dá)增加。(11)B16 TRCs和對照細(xì)胞中PCK1啟動子均呈高度甲基化。結(jié)論:黑色素瘤再生細(xì)胞相對于分化的腫瘤細(xì)胞上調(diào)表達(dá)PCK1,因缺乏FBP1和G6Pase的表達(dá),PCK1在腫瘤再生細(xì)胞中并不介導(dǎo)完整的糖異生,而是通過促進(jìn)糖酵解的側(cè)枝反應(yīng)以增強(qiáng)腫瘤再生細(xì)胞中間代謝產(chǎn)物的合成。干擾PCK1的表達(dá)可以抑制黑色素瘤再生細(xì)胞的體外生長和體內(nèi)成瘤能力。這些研究揭示PCK1上調(diào)表達(dá)是黑色素瘤再生細(xì)胞重要的代謝標(biāo)志之一,有可能作為黑色素瘤治療的一個新的靶點。第二部分PCK1、PCK2在乳腺癌腫瘤再生細(xì)胞中的表達(dá)研究目的:探究PCK1、PCK2在乳腺癌腫瘤再生細(xì)胞(TRCs)中的表達(dá)情況。方法:(1)采用三維軟纖維蛋白基質(zhì)膠(3D Fibrin)分離篩選MCF-7、T47D以及MDA-MB-231等人乳腺癌細(xì)胞株中的腫瘤再生細(xì)胞(TRCs),以RT-PCR檢測PCK1在這些TRCs以及對照細(xì)胞中的基因表達(dá)。(2)以Western blot檢測PCK1, PCK2在MCF-7、T47D、MDA-MB-231等來源TRCs以及相應(yīng)的對照細(xì)胞中的表達(dá)變化。結(jié)果:(1)在MCF-7、T47D、MDA-MB-231等乳腺癌來源的TRCs和對照細(xì)胞中檢測不到PCK1的基因表達(dá)。(2) MCF-7、T47D、MDA-MB-231等乳腺癌來源的TRCs相對于對照細(xì)胞上調(diào)表達(dá)PCK2。結(jié)論:乳腺癌再生細(xì)胞不表達(dá)PCK1而是上調(diào)表達(dá)其線粒體型的同工酶PCK2。PCK2上調(diào)表達(dá)可能是乳腺癌再生細(xì)胞重要的代謝特征之一,可為設(shè)計特異性針對乳腺癌腫瘤干細(xì)胞的抑制策略提供靶點。然而,關(guān)于PCK2的具體代謝功能還有待于進(jìn)一步闡明。第三部分 PCK2偶聯(lián)谷氨酰胺代謝途徑調(diào)控乳腺癌腫瘤再生細(xì)胞的增殖研究目的:以乳腺癌MCF-7細(xì)胞為模型,探究丙酮酸羧化酶(PC)對PCK2上調(diào)表達(dá)的腫瘤再生細(xì)胞(TRCs)的生物學(xué)意義,并從葡萄糖和谷氨酰胺代謝偶聯(lián)的角度對乳腺癌TRCs的細(xì)胞代謝特征進(jìn)行新的詮釋和探索。同時,我們嘗試通過聯(lián)合干擾PCK2和PC或谷氨酰胺裂解途徑來抑制TRCs的腫瘤治療新策略,為進(jìn)一步研究腫瘤再生細(xì)胞的脂質(zhì)代謝打下基礎(chǔ)。方法:(1)使用三維軟纖維蛋白基質(zhì)膠篩選分離乳腺癌MCF-7細(xì)胞中的TRCs,以酶學(xué)方法和高效液相色譜分別檢測MCF-7 TRCs和對照細(xì)胞葡萄糖和谷氨酰胺的利用效率,探究葡萄糖代謝與谷氨酰胺代謝的偶聯(lián)。(2)觀察無谷氨酰胺培養(yǎng)基培養(yǎng)的MCF-7 TRCs體外生長情況以研究TRCs對谷氨酰胺的依賴程度。(3)以Western blot檢測丙酮酸羧化酶(PC)、谷氨酰胺轉(zhuǎn)運(yùn)蛋白(SLC1A5)、谷氨酰胺裂解酶(GLS)以及異檸檬酸脫氫酶2(IDH2)在MCF-7 TRCs和普通MCF-7細(xì)胞中的表達(dá)。(4)分別以siRNA聯(lián)合干擾PCK2與PC、PCK2與GLS、PCK2與IDH2在MCF-7 TRCs中的表達(dá),觀察并統(tǒng)訓(xùn)MCF-7 TRCs克隆的體外生長情況。結(jié)果:(1)MCF-7 TRCs目對于普通MCF-7細(xì)胞消耗更多的葡萄糖和谷氨酰胺。(2)當(dāng)剝奪了培養(yǎng)基中的谷氨酰胺,MCF-7 TRCs的克隆大小和數(shù)量急劇下降。(3)MCF-7 TRCs相對于對照細(xì)胞除上調(diào)表達(dá)PCK2外,還同時上調(diào)表達(dá)PC、SLC1A5和IDH2。(4)聯(lián)合干擾PCK2與PC、PCK2與GLS或PCK2與IDH2較沉默單一位點對TRCs的抑制效果更明顯。結(jié)論:在PCK2上調(diào)表達(dá)的乳腺癌MCF-7 TRCs中,為了補(bǔ)充線粒體內(nèi)草酰乙酸的消耗以維持檸檬酸的合成,TRCs通過上調(diào)表達(dá)丙酮酸羧化酶以增加丙酮酸生成草酰乙酸的量。另外,TRCs還可通過增加谷氨酰胺的代謝來直接補(bǔ)充檸檬酸。通過PCK2上調(diào)可能介導(dǎo)的甘油骨架的合成增多以及谷氨酰胺裂解途徑增強(qiáng)的脂肪酸代謝,TRCs可合成更多的脂類物質(zhì)以滿足其旺盛的代謝需求。聯(lián)合靶向PCK2和PC或谷氨酰胺裂解途徑可能是非常有潛在應(yīng)用價值的針對腫瘤再生細(xì)胞的乳腺癌治療新策略。
[Abstract]:Part 1 Upregulation of PCK1 expression in melanoma regenerating cells promotes glycolytic collateral reaction. Objective: Tumor stem cells play an important role in the occurrence, development and recurrence of melanoma. In this study, three-dimensional soft fibrin matrix glue (3D fibrin) was used to isolate and screen tumor stem cells (defined as tumor regeneration cells, TRCs) as a model to investigate the expression of cytoplasmic phosphoenolpyruvate carboxykinase 1 (PCK1), one of the key enzymes in glyconeogenesis, in melanoma regeneration cells. Methods: (1) TRCs were isolated from murine melanoma B16 cells, hepatoma H22 cells and lymphoma EL4 cells by 3D fibrin, and then detected by RT-PCR, Real-time PCR and Western blot for the expression of P in these TRCs and the corresponding control cells, as well as the undifferentiated mesenchymal stem cells (mMSCs) and embryonic stem cells (mESCs). CK1 expression. (2) The co-expression of PCK1 with CD133, ALDH1A1 and ABCG5 was analyzed by gene expression data from cbioportal, a cancer gene database. The expression of PCK1 in CD133 + and CD133-B16 cell subsets was detected by Real-time PCR. (3) PCK1 was detected by immunohistochemistry in 9 Black patients. The expression of the other two key enzymes FBP1 and G6Pase in B16TRCs was detected by RT-PCR and Western blot to investigate whether PCK1 mediated glyconeogenesis. (5) Silencing PCK1 with siRNA. After expression, the growth of B16 TRCs in vitro, glucose consumption, lactic acid release and intermediate metabolites (such as serine/glycine, glycerol triphosphate) were observed to explore the metabolic function of PCK1. (6) The expression of PCK1 in B16 or H22 TRCs was silenced by siRNA, and the tumorigenic ability of PCK1 in B16 TRCs was observed. (7) The expression of PCK1 in B16 TRCs was silenced by siRNA. (8) To observe the effect of overexpression of PCK1 on the growth of B16 TRCs in vitro. (9) To construct EGFP fluorescent expression B16 cells controlled by PCK1 promoter, TRCs were isolated from the cells and cultured continuously in normal hard environment. Fluorescence microscopy was used to dynamically observe the fluorescence. The expression of PCK1 was detected by RT-PCR, Real-time PCR and Western blot. (10) The expression of PCK1 was detected by Real-time PCR after blocking the signal pathway sites of B16 TRCs with small molecular inhibitors or blocking antibodies. Results: (1) The expression of PCK1 was up-regulated in B16 cells, H22 cells and EL4 cells compared with differentiated tumor cells, and the expression of PCK1 was up-regulated in undifferentiated mouse mesenchymal stem cells and embryonic stem cells. (2) PCK1 was over-expressed in undifferentiated mouse mesenchymal stem cells and embryonic stem cells. The expression of CD133, ALDH1A1 and ABCG5 was positively correlated in multicellular cells, and the expression of PCK1 in CD133+B16 subgroup was higher than that in CD133-subgroup. (3) The overexpression of PCK1 was detected in about one third of melanoma clinical specimens, and the expression of PCK1 was up-regulated in TRCs isolated from human primary melanoma. After the key enzymes FBP1 and G6Pase. (5) siRNA silenced the expression of PCK1, the growth of B16 TRCs was significantly inhibited, glucose consumption and lactic acid release were reduced, and the levels of glycine and triphosphate were decreased. (6) After the expression of PCK1 was silenced by siRNA, the tumorigenic ability of B16 and H22 TRCs in mice was weakened. (7) Glycine supplementation and/or triphosphate glycerol partially reversed P After CK1 silencing, the growth of B16 TRCs was inhibited. (8) Overexpression of PCK1 promoted the growth of B16 TRCs in vitro. (9) Hard substrate culture could induce the down-regulation of PCK1 expression in B16 TRCs. (10) Inhibition of integrin alpha V beta 3 or P13K signal could induce the down-regulation of PCK1 expression in B16 TRCs, and H3K9 demethylation could induce the increase of PCK1 expression in B16 TRCs and control cells. Conclusion: Compared with differentiated tumor cells, melanoma regenerated cells up-regulate the expression of PCK1. Due to the lack of FBP1 and G6Pase expression, PCK1 does not mediate complete Glyconeogenesis in tumor regenerated cells, but enhances the intermediate metabolites in tumor regenerated cells by promoting the lateral branching reaction of glycolysis. Synthesis. Interference with the expression of PCK1 inhibits the growth of melanoma regenerating cells in vitro and in vivo tumorigenicity. These studies suggest that the up-regulation of PCK1 is one of the important metabolic markers of melanoma regenerating cells and may be a new target for melanoma treatment. Part II PCK1, PCK2 in breast cancer regenerating cells Objective: To investigate the expression of PCK1 and PCK2 in tumor regeneration cells (TRCs) of breast cancer. Methods: (1) The tumor regeneration cells (TRCs) of human breast cancer cell lines MCF-7, T47D and MDA-MB-231 were isolated and screened by three-dimensional soft fibrin matrix glue (3D Fibrin), and detected by RT-PCR. The expression of PCK1 and PCK2 was detected by Western blot. Results: (1) The expression of PCK1 was not detected in the TRCs from MCF-7, T47D, MDA-MB-231 and the control cells. (2) The expression of PCK1 was not detected in the TRCs from MCF-7, T47D, MDA-MB-231 and other breast cancer sources. CONCLUSION: The up-regulation of PCK2 expression in breast cancer regeneration cells may be one of the important metabolic characteristics of breast cancer regeneration cells, and may provide a target for designing specific inhibitory strategies against breast cancer stem cells. The specific metabolic functions of PCK2-glutamine pathway in regulating the proliferation of breast cancer regeneration cells are to be further elucidated. Part III. Objective: To investigate the biological significance of pyruvate carboxylase (PC) on PCK2-up-regulated tumor regeneration cells (TRCs) using breast cancer MCF-7 cells as a model, and from glucose and glucose. Glutamine metabolic coupling provides a new interpretation and exploration of the cellular metabolic characteristics of TRCs in breast cancer. At the same time, we attempted to inhibit TRCs by interfering with PCK2 and PC or glutamine cleavage pathways in combination to lay a foundation for further study of lipid metabolism in tumor regenerated cells. TRCs isolated from breast cancer MCF-7 cells were screened by soft fibrin matrix glue. The utilization efficiency of glucose and glutamine in MCF-7 TRCs and control cells were detected by enzyme method and high performance liquid chromatography respectively. The coupling of glucose metabolism and glutamine metabolism was explored. (2) The growth of MCF-7 TRCs cultured in glutamine-free medium was observed in vitro. To study the dependence of TRCs on glutamine. (3) The expressions of pyruvate carboxylase (PC), glutamine transporter (SLC1A5), glutamine lyase (GLS) and isocitrate dehydrogenase 2 (IDH2) in MCF-7 TRCs and MCF-7 cells were detected by Western blot. (4) The expressions of PCK2 and PC, PCK2 and GLS, PCK2 and IDH2 were interfered with by siRNA, respectively. Results: (1) MCF-7 TRCs consumed more glucose and glutamine for normal MCF-7 cells. (2) When glutamine was deprived of the culture medium, the clonal size and number of MCF-7 TRCs decreased sharply. (3) MCF-7 TRCs increased the expression of glucose and glutamine in normal MCF-7 cells. In addition to PCK2, the expression of PC, SLC1A5 and IDH2 was up-regulated at the same time. (4) Combined interference of PCK2 with PC, PCK2 with GLS or PCK2 with IDH2 was more effective than silencing a single site on TRCs. CONCLUSION: In breast cancer MCF-7 TRCs up-regulated by PCK2, TRCs can maintain citric acid synthesis by supplementing the consumption of oxaloacetic acid in mitochondria. In addition, TRCs can directly supplement citric acid by increasing the metabolism of glutamine. By up-regulating the synthesis of Glycerol Skeleton and the metabolism of fatty acids by the cleavage pathway of glutamine, TRCs can synthesize more lipids to meet their needs. Strong metabolic demands. Targeting PCK2 and PC or glutamine cleavage pathways together may be a promising new strategy for breast cancer treatment targeting tumor regeneration cells.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:R730.2
,

本文編號:2202206

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/yixuelunwen/zlx/2202206.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2c39f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
无码人妻精品中文字幕免费| 国产XXXX99真实实拍| 阳谷县| 4虎网址| 9人人澡人人爽人人精品| 8kraw| 日韩精品三级| 国产亚洲欧美一区二区三区| 制服一区| 伊人精品视频| 婷婷五月中文字幕在线| 亚洲日本va中文字幕久久亚洲国| 18禁免费无码无遮挡网站| 免费无遮挡无码永久视频| 欧洲成人午夜精品无码区久久| 国产午夜福利在线观看视频| 无码aⅴ免费中文字幕久久| CAOPORN国产精品免费| 久久国产情侣露脸精品| 欧美69| 日韩色在线| 啊v在线观看| zozozo女人极品另类| 99久久夜色精品国产亚洲| 浴室人妻的情欲hd中字| www.麻豆av| av久久人妻污污污www| 高雅人妻用嘴在我胯下| 精品一级二级三级四级五级| みたにあかり黑人巨大| | 隆子县| 少妇暴力深喉囗交3p| 国产麻豆videoxxxx实拍| 成全视频高清免费观看| 房东老头揉捏吃我奶头影片| 亚洲第一天堂无码专区| 天天综合网久久综合免费人成| 久久精品人人做人人爽电影| 亚洲人色婷婷成人网站在线观看| 少妇激情av一区二区|